Комплексные числа. Операции над ними.

Комплексным числом называется выражение вида a + bi, где a и b — вещественные числа, i — элемент, так называемая, мнимая единица, не принадлежащий R(множеству действительных чисел).

Рассмотрим комплексное число z = a + bi. Число a называется действительной частью комплексного числа, b — мнимой частью, и обозначаются Re(z) и Im(z), соответственно.

Пример: Для комплексного числа z = 3 − 2i имеем, Re(z) = 3, Im(z) = −2.

Замечание: Любое вещественное число a можно рассматривать как комплексное число a + 0i. Таким образом, множество вещественных чисел лежит в множестве комплексных чисел.

Два комплексных числа будем считать равными тогда и только тогда, когда совпадают их вещественные и мнимые части. Множество комплексных чисел обозначается буквой C.

На множестве комплексных чисел введем две операции: сложение и умножение. Пусть даны два комплексных числа z = a + bi, w = c + di. Тогда

Введенные операции обладают всеми хорошими свойствами, такими же как операции сложения и умножения на множестве вещественных чисел (ассоциативностью, коммутативностью, дистрибутивностью).

Пример 20. Для мнимой единицы i можно легко составить таблицу jумножения: i 2 = −1, i 3 = −i, i 4 = 1 и т.д.

Упражнение: вычислите, чему равно выражение i 59

Подчеркнем еще раз важное свойство мнимой единицы: i 2 = −1.

По аналогии с операциями на R на множестве комплексных чисел можно ввести операции вычитания и деления. Для комплексных чисел z = a + bi и w = c + di определим

Пусть дано комплексное число z = a + bi. Комплексно сопряженным к числу z называется число a − bi и обозначается через z. Рассмотрим некоторые свойства комплексного сопряжения. Для любых комплексных числ z, z1, z2 выполнено

Простое правило для выполнения деления комплексных чисел. Для того, чтобы вычислить выражение w zс комплексными числами z и w, нужно и числитель, и знаменатель умножить на комплексно сопряженное к знаменателю.

Геометрической интерпретацией комплексных чисел является так называемая комплексная плоскость. На плоскости введем декартову (прямоугольную) систему координат. Каждой точке плоскости с координатами (a, b) сопоставим комплексное число a + bi. Такое сопоставление является взаимно однозначным. Ось абсцисс называется действительной осью, ось ординат — мнимой осью.

На плоскости можно ввести полярную систему координат, ассоциированную декартовой. Тогда любая точка плоскости задается парой чисел: длиной радиус-вектора и углом поворота.

Длина радиус вектора, отвечающего комплексному числу z = a + bi, называется модулем этого числа и обозначается |z| или r. Справедлива формула . Величина угла между положительным направлением действительной оси и радиус вектором, отвечающим комплексному числу, называется аргументом этого числа и обозначается arg z или φ . Следующие формулы имеют место

Форма записи комплексного числа a+bi называется алгебраической. Это форма удобна для сложения и вычитания комплексных чисел. Перейдя в полярную систему координат на комплексной плоскости (a = r cos φ и b = r sin φ ), любое комплексное число z = a + bi можно представить в виде:

Такая запись называется тригонометрической формой комплексного числа z. Здесь число r — модуль комплексного числа z, φ — аргумент числа z. На рис. 4.4 изображена единичная окружность с основными табличными значениями синуса и косинуса.



Векторное и смешанное произведение векторов
Таблица дифференциалов


Узнать стоимость за 15 минут
  • Тип работы
  • Часть диплома
  • Дипломная работа
  • Курсовая работа
  • Контрольная работа
  • Реферат
  • Научно - исследовательская работа
  • Отчет по практике
  • Ответы на билеты
  • Тест/экзамен online
  • Монография
  • Эссе
  • Доклад
  • Компьютерный набор текста
  • Компьютерный чертеж
  • Рецензия
  • Перевод
  • Репетитор
  • Бизнес-план
  • Конспекты
  • Проверка качества
  • Единоразовая консультация
  • Аспирантский реферат
  • Магистерская работа
  • Научная статья
  • Научный труд
  • Техническая редакция текста
  • Чертеж от руки
  • Диаграммы, таблицы
  • Презентация к защите
  • Тезисный план
  • Речь к диплому
  • Доработка заказа клиента
  • Отзыв на диплом
  • Публикация статьи в Вак
  • Публикация статьи в Scopus
  • Дипломная работа MBA
  • Повышение оригинальности
  • Шрифт, pt
  • 12 pt
  • 14 pt
  • Другой
Прикрепить файл
Заказать