Как вычислить двойной интеграл

в полярной системе координат?

Закончим бой с двойным интегралом нокаутом в третьем раунде. Что нужно знать и уметь для полной победы? Ещё раз взглянем на заголовок статьи… очевидно, вы должны знать, что такое полярные координаты… и уметь решать двойные интегралы =) Стоп-стоп, не закрываем в панике страницу – первое осваивается в считанные минуты, ну а второе, конечно, несколько дольше. Итак, чайникам – двойные интегралы для чайников, остальных же читателей приглашаю ознакомиться с третьим уроком темы. Новизны будет совсем немного и если вы мало-мальски набили руку на вычислении двойных интегралов, то особых трудностей возникнуть не должно.

Типовое задание формулируется примерно так: «Вычислить двойной интеграл, используя полярную систему координат». После чего для решения предлагается … обычный двойной интеграл в декартовых координатах по области . Сначала рассмотрим более простой и распространённый случай, когда подынтегральная функция двух переменных и двойной интеграл численно равен площади области интегрирования. Разберём алгоритм решения на бесхитростной демо-задаче:

Вычислить площадь плоской фигуры, ограниченную линиями , с помощью двойного интеграла, используя полярную систему координат

Решение: На первом этапе ничего нового. Выполняем чертёж области в прямоугольной системе координат. Линейное неравенство определяет правую полуплоскость, включая ось , а уравнение , очевидно, задаёт какую-то линию 2-го порядка. Чтобы выяснить, какую именно – выделим полный квадрат:

окружность единичного радиуса с центром в точке .

Таким образом, требуется вычислить площадь половинки круга:

Не упустим возможность сразу узнать ответ. По школьной формуле у нас должно получиться:

Площадь фигуры стандартно рассчитывается по формуле , однако по условию нужно воспользоваться полярными координатами. На всякий случай закомментирую расположение полярной системы координат: полюс совпадает с началом прямоугольной системы, а полярная ось – с положительным направлением оси . Полярную ось можно прочертить жирнее, но лично я часто этим пренебрегаю.

При переходе к полярной системе координат произведение дифференциалов ВСЕГДА превращается в следующую вещь:

То есть, от интегрирования по декартовым «иксу» и «игреку» мы перешли к интегрированию по полярному радиусу «эр» и полярному углу «фи». Обратите внимание на дополнительно появившийся множитель , образно говоря, это «плата за переход», любители высшей математики могут погуглить якобиан перехода к полярным координатам. Практическая же сторона вопроса состоит в том, что этот множитель «эр» терять нельзя.

Таким образом:

Но это ещё не всё – ведь границы области тоже заданы в декартовой системе. Используем формулы перехода к полярным координатам . Ось ординат не трогаем, а вот окружность потревожим:

– получено типовое уравнение, на котором заострялось внимание ещё в статье Полярные координаты.

Теперь двойной интеграл необходимо свести к повторным интегралам. Для этого нужно выяснить порядок обхода области. На уроке Двойные интегралы для чайников мы орудовали виртуальной лазерной указкой, в полярных же координатах более удачна другая ассоциация – просвечивание области радаром. Представьте, что из точки полюса исходит луч света и вращается против часовой стрелки.

Когда луч радара поворачивается от полярной оси до угла (зелёная стрелка), то он входит в область непосредственно из полюса (начиная со значения ) и выходит из неё через окружность (красная стрелка). Таким образом, на промежутке полярный радиус изменяется в пределах и область интегрирования полностью «просканирована».

В результате:

Множитель , разумеется, уходит во внутренний интеграл, где осуществляется интегрирование по «эр».

Начинающим вновь рекомендую оформить концовку в два пункта:

1) , чтобы продемонстрировать на следующем шаге примечательный факт, дальше упрощать пока не буду.

2) Подставляем трофей во внешний интеграл:

Заметьте, что здесь прорисовалась знакомая формула площади криволинейного сектора , которой мы активно пользовались на уроке Вычисление площади в полярных координатах с помощью интеграла, и фактически 2-й пункт – это повторение пройденного материала!

Что и требовалось получить.

Ответ:

В простых случаях, как этот, вычисления можно оформить и одной строкой:

Но злоупотреблять короткой дорожкой не советую – повышается риск запутаться.

В разобранной задаче жёстко требовалось использовать полярную систему координат, и это очень хорошо! Я не иронизирую. Как ни странно, более свободная формулировка условия может здОрово осложнить жизнь. Отрубим ящерице хвост:

«Вычислить площадь плоской фигуры, ограниченную линиями , с помощью двойного интеграла»

Дело в том, что площадь данной фигуры рассчитывается и с помощью двойного интеграла в прямоугольной системе координат. Но решение получается длительным и громоздим (см. задачу нахождения площади круга), и если человек не знает о возможности перехода к полярным координатам (а по условию это не запрещено!), то будет загружен трудной работой.

Давайте ещё укоротим условие:

«Вычислить площадь плоской фигуры, ограниченную линиями »

Здесь появилась новая степень свободы, и площадь фигуры помимо прочих способов можно рассчитать с помощью однократного интеграла (решение будет почти совпадать с решением через двойной интеграл). А люди со своеобразным чувством юмора вычислят площадь и по школьной формуле, чтобы затем настойчиво доказывать рецензенту корректность своего решения =) В чём, кстати, будут правы – ибо поборник конкретики должен и задачи ставить конкретно!

Чуть позже я коснусь ещё одной важной разновидности условия, а пока рассмотрим более содержательное задание:

С помощью двойного интеграла вычислить площадь фигуры, ограниченной линиями

Решение: Изобразим данную фигуру на чертеже. С прямыми всё понятно, осталось прояснить вид линий 2-го порядка. Выделяем полные квадраты:

окружность единичного радиуса с центром в точке .

окружность с центром в точке радиуса 2.

В условии задачи ничего не сказано о полярной системе координат, и поэтому площадь фигуры можно рассчитать «обычным» двойным интегралом. Но что-то не хочется. Впрочем, если найдётся энтузиаст и отправит мне разборчивое решение, то я его, пожалуй, опубликую в качестве страшилки =)

Какова предпосылка для перехода к полярным координатам?

Очевидно, что основной предпосылкой является наличие окружности (ей). Подчёркиваю, что это лишь предпосылка, а не обязательное правило! То есть, область интегрирования может быть ограничена окружностью (ями), но переход к полярным координатам только усложнит решение, а то и вообще заведёт его в тупик. И такие примеры встречаются реально.

Итак, площадь фигуры вычислим с помощью двойного интеграла, используя полярную систему координат:

По формулам перехода найдём полярные уравнения окружностей:

Теперь выясним порядок обхода области. Луч радара входит в область через окружность и выходит из неё через окружность (красная стрелка), при этом он осуществляет поворот от полярной оси до угла (зелёная стрелка).

Напомню также, что «альфа» и «бета» – это не просто формальные значения углов: полярное уравнение непосредственно задаёт полярную ось (положительное направление оси абсцисс), а уравнение – луч, исходящий из полюса и совпадающий с верхней частью прямой .

Примечание: если рассматривать обобщенные полярные координаты, то уравнение определяет полярную ось и её продолжение (всю ось абсцисс), а уравнение – всю прямую

В рассматриваемой задаче дана «хорошая» прямая и значение угла понятно «с ходу». Как найти угол в общем случае? Из материалов статьи Прямая на плоскости вспоминаем, что угловой коэффициент прямой равен тангенсу угла наклона данной прямой к положительному направлению оси абсцисс: . В данном случае , откуда следует, что (если тяжко с числами – тригонометрические таблицы в помощь).

Возвращаемся к решению. По результатам «сканирования» области мы выяснили, что на промежутке полярный радиус изменяется в пределах .

Перейдём к повторным интегралам:

Ответ:

Прикинув по чертежу количество клеточек, приходим к выводу, что полученный результат вполне и вполне правдоподобен.

Следующие два примера для самостоятельного решения:

С помощью двойного интеграла вычислить площадь фигуры, ограниченной линиями

Вычислить двойной интеграл, используя полярные координаты

В примере №4 мы встретили ещё одну распространённую формулировку условия, в которой предложено непосредственно вычислить двойной интеграл. Да, он численно равен площади области , но, коль скоро, о площади изначально молчок, то и в решении об этом не нужно упоминать ;-) Подумайте, как грамотно записать ответ задания.

Примерные образцы решений и чертежи в конце урока. Я их оформил в разном стиле, выбирайте, что больше нравится.

То были заезженные типовики, а сейчас на очереди более редкий, но очень интересный и поучительный экземпляр:

Вычислить двойной интеграл

Решение: определённый интеграл задаёт площадь области интегрирования, но о площади нас никто не спрашивал, поэтому никого не будем загружать своей эрудицией =) К тому же она сейчас ой как потребуется для других целей.

В чём заключается особенность этого задания? Прежде всего, бросается в глаза, что область «дэ» ограничена единственной кривой, и по характерным признакам – это какая-то алгебраическая линия 4-го порядка. Основная проблема у нас с чертежом. Конечно, можно погрузиться в справочники, но на это нет ни времени, ни особого желания. Поэтому мы попытаемся ограничиться общим анализом и обойтись совсем без чертежа.

Можно ли обойтись без чертежа?

Об этом я уже говорил на 1-м уроке: если условие задачи его не требует – то можно. Правда, область интегрирования всё равно придётся представить мысленно. Но даже если у вас есть такие способности, то демонстрировать их совсем не обязательно – потому что тяжелА жизнь вундеркинда =) И житейская мудрость заключается в том, что чертёжи, по возможности лучше выполнять. Однако у нас другой случай, когда наоборот – будет подозрительно смотреться построенный график линии 4-го порядка. Знаниями убивать тоже никого не надо, и в этой связи мы постараемся отделаться чисто аналитическим решением.

Поскольку область интегрирования, как правило, ограничена, то уравнение задаёт либо единственную замкнутую кривую, либо несколько ограниченных областей – что-то наподобие лепестков полярной розы. Ситуацию помогла бы прояснить область определения функции, но её нахождение тоже затруднено ввиду навороченности уравнения.

Что делать? Подумать о возможности использования полярной системы координат. Причём подумать самостоятельно – условие нам совершенно не намекает на способ решения. Поскольку в уравнении присутствуют знакомые «икс квадрат» и «игрек квадрат», то применение полярных координат действительно выглядит перспективно. По формулам перехода :

Вот и первое достижение – удалось понизить степень. С извлечением корня никаких шероховатостей, полярный радиус неотрицателен, параметр , косинус в знаменателе – в чётной степени:

Теперь займёмся областью определения. Поскольку тригонометрические функции периодичны, то нас интересует промежуток , или, что то же самое .

Знаменатель не может равняться нулю, поэтому .

Кроме того, подкоренное выражение должно быть неотрицательным: . Сведём данное условие к простейшему тригонометрическому неравенству, применив формулы понижения степени:

Я неоднократно ратовал за графическое решение подобных неравенств, но раз уж решили обойтись без чертежей, давайте вытащим из школьного учебника известную формулу. Решением неравенства , где , является следующее множество промежутков:

, где (любое целое число).

Разделим все части неравенства на 2:

В «сферу наших интересов» входят следующие значения «ка»:

В результате, область определения полярной функции :

Два нижних значения не вошли в найденные выше промежутки, что избавляет нас от дополнительных хлопот. На отрезках расположены две одинаковые (в силу периодичности и ) кривые, и график функции , судя по всему, представляет собой что-то вроде двух одинаковых лепестков, как, собственно, и предполагалось.

Таким образом, достаточно рассмотреть промежуток , а результат удвоить. Луч радара, исходя из полюса , сразу попадает в область интегрирования и выходит из неё через границу «лепестка» ; при этом он осуществляет поворот от значения до .

Переход к повторным интегралам, думаю, всем понятен:

1) Понеслась нелёгкая:

2) Подставляем результат предыдущего пункта во внешний интеграл, не забывая про «двойку» перед ним (удвоение «лепестка»):

На первом шаге удвоили интеграл от чётной функции по симметричному относительно нуля отрезку. Чтобы «не таскать всё за собой», подынтегральную функцию удобно преобразовать отдельно. Приведём её к пригодному (и выгодному!) для интегрирования виду:

Ответ:

Именно так. Не забываем, что в условии не спрашивалось о площадях и квадратных единицах. Однако после того как я нашёл в своих закромах этот трудный пример и включил его в содержание статьи, мне стало жутко интересно, так как же всё-таки выглядит график функции , и не допущена ли ошибка в вычислениях. Придав параметру значение , я изобразил график функции с помощью своего графопостроителя (см. Математические формулы и таблицы), и полученное значение площади оказалось очень похоже на правду. Желающие могут проделать то же самое. А если условие подобной задачи требует чертежа – то придётся =)

Получился такой увлекательный разбор решения, что на этом фоне как-то затерялся тот момент, что в двойном интеграле может оказаться «настоящая» функция с «живым» «иксом» и/или «игреком»:

Вычислить двойной интеграл, используя полярные координаты

Решение: область интегрирования здесь очень простая – это часть кольца между концентрическими окружностями , которая располагается в четвёртой координатной четверти (о чём нам сообщают неравенства ). И коль скоро так всё просто, можно сразу заняться переходом к полярной системе координат по формулам .

Найдём уравнения окружностей:

И выполним чертёж:

Порядок обхода области предельно понятен:

Можно было взять промежуток , но работать с табличным значением гораздо привычнее.

Фишка последнего шага должна быть вам хорошо знакома: когда проводится интегрирование по переменной «эр», то переменная «фи» считается константой (и наоборот). Поэтому константу целесообразно сразу вынести из внутреннего интеграла, чтобы она не мешалась под ногами.

Ответ:

После того, как занавес опущен, повторим геометрический смысл полученного результата. По условию , следовательно, , то есть поверхность, которую задаёт эта функция двух переменных, в 1-й и 4-й четвертях расположена над плоскостью . Полученный в задаче результат – это в точности объём цилиндрического бруса, который ограничен плоскостью снизу, поверхностью – сверху и множеством перпендикулярных плоскости прямых, проходящих через каждую точку границы области («четвертинки» кольца) – сбоку. Примерно 66 «кубиков»: С задачей нахождения объёма тела мы вплотную столкнёмся при изучении тройных интегралов.

Завершим занятие несложным примером для самостоятельного решения:

Вычислить двойной интеграл, используя полярные координаты

Примерный образец чистового оформления задания в подвале.

Иногда область интегрирования приходится разбивать на две части и находить сумму двух двойных интегралов в полярных координатах, желающие могут потренироваться на Примерах №№8,9 урока Площадь в полярных координатах. Кроме того, много дополнительных задач по теме можно раздобыть на странице готовых решений по высшей математике.

Решения и ответы:

Пример 3: Решение: выделим полные квадраты и определим вид линий:

– окружность единичного радиуса с центром в точке ;

– окружность единичного радиуса с центром в точке .

Изобразим область интегрирования на чертеже:

Площадь фигуры вычислим с помощью двойного интеграла, используя полярную систему координат:

Найдём угол наклона прямой :

Порядок обхода области:

Ответ:

Пример 4: Решение: найдём уравнения линий в полярной системе координат:

Изобразим область интегрирования на чертеже:

Порядок обхода области:

Таким образом:

Ответ:

Пример 7: Решение: перейдём к полярной системе координат:

Изобразим область интегрирования на чертеже:

Порядок обхода области:

1)

Ответ:

Автор: Емелин Александр

(Переход на главную страницу)

Качественные работы без плагиата – Zaochnik.com



Пределы по Коши


Узнать стоимость за 15 минут
  • Тип работы
  • Часть диплома
  • Дипломная работа
  • Курсовая работа
  • Контрольная работа
  • Реферат
  • Научно - исследовательская работа
  • Отчет по практике
  • Ответы на билеты
  • Тест/экзамен online
  • Монография
  • Эссе
  • Доклад
  • Компьютерный набор текста
  • Компьютерный чертеж
  • Рецензия
  • Перевод
  • Репетитор
  • Бизнес-план
  • Конспекты
  • Проверка качества
  • Единоразовая консультация
  • Аспирантский реферат
  • Магистерская работа
  • Научная статья
  • Научный труд
  • Техническая редакция текста
  • Чертеж от руки
  • Диаграммы, таблицы
  • Презентация к защите
  • Тезисный план
  • Речь к диплому
  • Доработка заказа клиента
  • Отзыв на диплом
  • Публикация статьи в Вак
  • Публикация статьи в Scopus
  • Дипломная работа MBA
  • Повышение оригинальности
  • Шрифт, pt
  • 12 pt
  • 14 pt
  • Другой
Прикрепить файл
Заказать