Дробно-линейная функция

В данном уроке мы рассмотрим дробно-линейную функцию, решим задачи с использованием дробно-линейной функции, модуля, параметра.

Урок: Дробно-линейная функция

1. Понятие и график дробно-линейной функции

Дробно-линейной называется функция вида:

Докажем, что графиком данной дробно-линейной функции является гипербола.

Вынесем в числителе двойку за скобки, получим:

Имеем х и в числителе, и в знаменателе. Теперь преобразуем так, чтобы в числителе появилось выражение :

Теперь почленно сократим дробь:

Очевидно, что графиком данной функции является гипербола.

Можно предложить второй способ доказательства, а именно разделить в столбик числитель на знаменатель:

2. Построение эскиза графика дробно-линейной функции

Важно уметь легко строить график дробно-линейной функции, в частности находить центр симметрии гиперболы. Решим задачу.

Пример 1 – построить эскиз графика функции:

Мы уже преобразовали данную функцию и получили:

Для построения данного графика мы не будем сдвигать оси или саму гиперболу. Мы используем стандартный метод построения графиков функции, использующий наличие интервалов знакопостоянства.

Действуем согласно алгоритму. Сначала исследуем заданную функцию.

ОДЗ:

Корни:

Таким образом, имеем три интервала знакопостоянства: на крайнем правом () функция имеет знак плюс, далее знаки чередуются, так как все корни имеют первую степень. Так, на интервале функция отрицательна, на интервале функция положительна.

Строим эскиз графика в окрестностях корней и точек разрыва ОДЗ. Имеем: поскольку в точке знак функции меняется с плюса на минус, то кривая сначала находится над осью, потом проходит через ноль и далее расположена под осью х. Когда знаменатель дроби практически равен нулю, значит, когда значение аргумента стремится тройке, значение дроби стремится к бесконечности. В данном случае, когда аргумент подходит к тройке слева функция отрицательна и стремится к минус бесконечности, справа функция положительна и выходит из плюс бесконечности.

Теперь строим эскиз графика функции в окрестностях бесконечно удаленных точек, т. е. когда аргумент стремится к плюс или минус бесконечности. Постоянными слагаемыми при этом можно пренебречь. Имеем:

Таким образом, имеем горизонтальную асимптоту и вертикальную , центр гиперболы точка (3;2). Проиллюстрируем:

Рис. 1. График гиперболы к примеру 1

3. Дробно линейная функция с модулем, ее график

Задачи с дробно-линейной функцией могут быть осложнены наличием модуля или параметра. Чтобы построить, например, график функции , необходимо следовать следующему алгоритму:

1. Построить график подмодульной функции

Предположим, получен следующий график:

Рис. 2. Иллюстрация к алгоритму

В полученном графике есть ветви, которые находятся над осью х и под осью х.

1. Наложить заданный модуль. При этом части графика, находящиеся над осью х, остаются без изменений, а те, которые находятся под осью – зеркально отображаются относительно оси х. Получим:

Рис. 3. Иллюстрация к алгоритму

Пример 2 – построить график функции:

Согласно алгоритму, сначала нужно построить график подмодульной функции, мы его уже построили (см. рисунок 1)

Далее требуется наложить на функцию модуль, при этом части графика, находящиеся над осью х, остаются без изменений, а те, которые находятся под осью – зеркально отображаются относительно оси х. Получим:

Рис. 4. График функции к примеру 2

4. Решение дробно-линейного уравнения с параметром

Рассмотрим следующую задачу – построить график функции . Для этого необходимо следовать следующему алгоритму:

1. Построить график подмодульной функции

Предположим, получен следующий график:

Рис. 5. Иллюстрация к алгоритму

1. Наложить заданный модуль. Чтобы понять, как это сделать, раскроем модуль.

Таким образом, для значений функции при неотрицательных значениях аргумента изменений не произойдет. Касательно второго уравнения мы знаем, что оно получается путем симметричного отображения относительно оси у. имеем график функции:

Рис. 6. Иллюстрация к алгоритму

Пример 3 – построить график функции:

Согласно алгоритму, сначала нужно построить график подмодульной функции, мы его уже построили (см. рисунок 1)

Далее требуется наложить на аргумент модуль, при этом части графика, находящиеся справа от оси у, остаются без изменений, и симметрично отображаются относительно оси у. Получим:

Рис. 7. График функции к примеру 3

Пример 4 – найти число корней уравнения с параметром:

Напомним, что решить уравнение с параметром означает перебрать все значения параметра и для каждого из них указать ответ. Действуем согласно методике. Сначала строим график функции, это мы уже сделали в предыдущем примере (см. рисунок 7). Далее необходимо рассечь график семейством прямых при различных а, найти точки пересечения и выписать ответ.

Глядя на график, выписываем ответ: при и уравнение имеет два решения; при уравнение имеет одно решение; при уравнение не имеет решений.

Рис. 8. График функции к примеру 4

Итак, мы рассмотрели дробно-линейную функцию, далее будем рассматривать функции третьей и четвертой степени.

Список рекомендованной литературы

1. Мордкович А. Г. Алгебра и начала математического анализа. М.: Мнемозина

2. Муравин Г. К., Муравина О. В. Алгебра и начала математического анализа. М.: Дрофа.

3. Колмогоров А. Н., Абрамов А. М., Дудницын Ю. П. и др. Алгебра и начала математического анализа. М.: Просвещение.

Рекомендованные ссылки на ресурсы интернет

1. Математика, которая мне нравится .

2. Егэ по математике .

3. Институт менеджмента, маркетинга и финансов .

Рекомендованное домашнее задание



Геометрическая прогрессия
Тождественное преобразование в тригонометрии