/ Элементарные функции и их графики

Элементарные функции и их графики

Прямая пропорциональность. Линейная функция.

Обратная пропорциональность. Гипербола.

Квадратичная функция. Квадратная парабола.

Степенная функция. Показательная функция.

Логарифмическая функция. Тригонометрические функции.

Обратные тригонометрические функции.

Пропорциональные величины. Если переменные y и x прямо пропорциональны, то функциональная зависимость между ними выражается уравнением:

где k - постоянная величина ( коэффициент пропорциональности ).

График прямой пропорциональности – прямая линия, проходящая через начало координат и образующая с осью X угол , тангенс которого равен k : tan = k ( рис.8 ). Поэтому, коэффициент пропорциональности называется также угловым коэффициентом. На рис.8 показаны три графика для k = 1/3, k = 1 и k = 3 .

Линейная функция. Если переменные y и x связаны уравнением 1-ой степени:

где по крайней мере одно из чисел A или B не равно нулю, то графиком этой функциональной зависимости является прямая линия. Если C = 0, то она проходит через начало координат, в противном случае - нет. Графики линейных функций для различных комбинаций A, B, C показаны на рис.9.

Обратная пропорциональность. Если переменные y и x обратно пропорциональны, то функциональная зависимость между ними выражается уравнением:

где k - постоянная величина.

График обратной пропорциональности – гипербола ( рис.10 ). У этой кривой две ветви. Гиперболы получаются при пересечении кругового конуса плоскостью ( о конических сечениях см. раздел «Конус» в главе «Стереометрия» ). Как показано на рис.10, произведение координат точек гиперболы есть величина постоянная, в нашем примере равная 1. В общем случае эта величина равна k, что следует из уравнения гиперболы: xy = k.

Основные характеристики и свойства гиперболы:

- область определения функции: x 0, область значений: y 0 ;

- функция монотонная ( убывающая ) при x < 0 и при x > 0, но не

монотонная в целом из-за точки разрыва x = 0 ( подумайте, почему ? );

- функция неограниченная, разрывная в точке x = 0, нечётная, непериодическая;

- нулей функция не имеет.

Квадратичная функция. Это функция: y = ax 2 + bx + c, где a, b, c - постоянные, a 0. В простейшем случае имеем: b = c = 0 и y = ax 2 . График этой функции квадратная парабола - кривая, проходящая через начало координат ( рис.11 ). Каждая парабола имеет ось симметрии OY, которая называется осью параболы. Точка O пересечения параболы с её осью называется вершиной параболы.

График функции y = ax 2 + bx + c - тоже квадратная парабола того же вида, что и y = ax 2 , но её вершина лежит не в начале координат, а в точке с координатами:

Форма и расположение квадратной параболы в системе координат полностью зависит от двух параметров: коэффициента a при x 2 и дискриминанта D: D = b 2 4ac. Эти свойства следуют из анализа корней квадратного уравнения (см. соответствующий раздел в главе «Алгебра»). Все возможные различные случаи для квадратной параболы показаны на рис.12.

Изобразите, пожалуйста, квадратную параболу для случая a > 0, D > 0 .

Основные характеристики и свойства квадратной параболы:

- область определения функции: < x+ ( т.e. x R ), а область

значений: ( ответьте, пожалуйста , на этот вопрос сами ! );

- функция в целом не монотонна, но справа или слева от вершины

ведёт себя, как монотонная;

- функция неограниченная, всюду непрерывная, чётная при b = c = 0,

- при D < 0 не имеет нулей. ( А что при D 0 ? ) .

Степенная функция. Это функция: y = ax n , где a , n – постоянные. При n = 1 получаем прямую пропорциональность: y = ax; при n = 2 - квадратную параболу; при n = 1 - обратную пропорциональность или гиперболу. Таким образом, эти функции - частные случаи степенной функции. Мы знаем, что нулевая степень любого числа, отличного от нуля, равна 1, cледовательно, при n = 0 степенная функция превращается в постоянную величину: y = a, т.e. её график - прямая линия, параллельная оси Х, исключая начало координат ( поясните, пожалуйста, почему ? ). Все эти случаи ( при a = 1 ) показаны на рис.13 ( n 0 ) и рис.14 ( n < 0 ). Отрицательные значения x здесь не рассматриваются, так как тогда некоторые функции:

Если n – целые, степенные функции имеют смысл и при x < 0, но их графики имеют различный вид в зависимости от того, является ли n чётным числом или нечётным. На рис.15 показаны две такие степенные функции: для n = 2 и n = 3.

При n = 2 функция чётная и её график симметричен относительно оси Y. При n = 3 функция нечётная и её график симметричен относительно начала координат. Функция y = x 3 называется кубической параболой.

На рис.16 представлена функция . Эта функция является обратной к квадратной параболе y = x 2 , её график получается поворотом графика квадратной параболы вокруг биссектрисы 1-го координатного углаЭто способ получения графика любой обратной функции из графика её исходной функции. Мы видим по графику, что это двузначная функция ( об этом говорит и знак  перед квадратным корнем ). Такие функции не изучаются в элементарной математике, поэтому в качестве функции мы рассматриваем обычно одну из её ветвей: верхнюю или нижнюю.

Показательная функция. Функция y = a x , где a - положительное постоянное число, называется показательной функцией. Аргумент x принимает любые действительные значения; в качестве значений функции рассматриваются только положительные числа, так как иначе мы имеем многозначную функцию. Так, функция y = 81 x имеет при x = 1/4 четыре различных значения: y = 3, y = 3, y = 3 i и y = 3 i (проверьте, пожалуйста !). Но мы рассматриваем в качестве значения функции только y = 3. Графики показательной функции для a = 2 и a = 1/2 представлены на рис.17. Они проходят через точку ( 0, 1 ). При a = 1 мы имеем график прямой линии, параллельной оси Х, т.e. функция превращается в постоянную величину, равную 1. При a > 1 показательная функция возрастает, a при 0 < a < 1 – убывает.

Основные характеристики и свойства показательной функции:

- область определения функции: < x+ ( т.e. x R );

область значений: y > 0 ;

- функция монотонна: возрастает при a > 1 и убывает при 0 < a < 1;

- функция неограниченная, всюду непрерывная, непериодическая;

- нулей функция не имеет.

Логарифмическая функция. Функция y = log a x, где a – постоянное положительное число, не равное 1, называется логарифмической. Эта функция является обратной к показательной функции; её график ( рис.18 ) может быть получен поворотом графика показательной функции вокруг биссектрисы 1-го координатного угла.

Основные характеристики и свойства логарифмической функции:

- область определения функции: x > 0, а область значений: < y+

( т.e. y R );

- это монотонная функция: она возрастает при a > 1 и убывает при 0 < a < 1;

- функция неограниченная, всюду непрерывная, непериодическая;

- у функции есть один ноль: x = 1.

Тригонометрические функции. При построении тригонометрических функций мы используем радианную меру измерения углов. Тогда функция y = sin x представляется графиком ( рис.19 ). Эта кривая называется синусоидой.

График функции y = cos x представлен на рис.20; это также синусоида, полученная в результате перемещения графика y = sin x вдоль оси Х влево на 2

Из этих графиков очевидны характеристики и свойства этих функций:

- область определения: < x +  область значений: 1 y +1;

- эти функции периодические: их период 2;

- функции ограниченные ( | y | , всюду непрерывные, не монотонные, но

имеющие так называемые интервалы монотонности, внутри которых они

ведут себя, как монотонные функции ( см. графики рис.19 и рис.20 );

- функции имеют бесчисленное множество нулей ( подробнее см. раздел

Графики функций y = tan x и y = cot x показаны соответственно на рис.21 и рис.22

Из графиков видно, что эти функции: периодические ( их период ,

неограниченные, в целом не монотонные, но имеют интервалы монотонности

( какие? ), разрывные ( какие точки разрыва имеют эти функции? ). Область

определения и область значений этих функций:

Обратные тригонометрические функции.Определения обратных

тригонометрических функций и их основные свойства приведены в

одноимённом разделе в главе «Тригонометрия». Поэтому здесь мы ограничимся

лишь короткими комметариями, касающимися их графиков, полученных

поворотом графиков тригонометрических функций вокруг биссектрисы 1-го

Функции y = Arcsin x ( рис.23 ) и y = Arccos x ( рис.24 ) многозначные, неограниченные; их область определения и область значений соответственно: 1 x +1 и < y + . Поскольку эти функции многозначные, не

рассматриваемые в элементарной математике, в качестве обратных тригонометрических функций рассматриваются их главные значения: y = arcsin x и y = arccos x; их графики выделены на рис.23 и рис.24 жирными линиями.

Функции y = arcsin x и y = arccos x обладают следующими характеристиками и свойствами:

- у обеих функций одна и та же область определения: 1 x +1 ;

их области значений: /2 y /2 для y = arcsin x и 0 y для y = arccos x;

- функции ограниченные, непериодические, непрерывные и монотонные

( y = arcsin x – возрастающая функция; y = arccos x – убывающая );

- каждая функция имеет по одному нулю ( x = 0 у функции y = arcsin x и

Функции y = Arctan x ( рис.25 ) и y = Arccot x ( рис.26 ) - многозначные, неограниченные функции; их область определения: x + . Их главные значения y = arctan x и y = arccot x рассматриваются в качестве обратных тригонометрических функций; их графики выделены на рис.25 и рис.26 жирными ветвями.

Функции y = arctan x и y = arccot x имеют следующие характеристики и свойства:

- у обеих функций одна и та же область определения: x + ;

их области значений: /2 < y < /2 для y = arctan x и 0 < y < для y = arccos x;

- функции ограниченные, непериодические, непрерывные и монотонные

( y = arctan x – возрастающая функция; y = arccot x – убывающая );

- только функция y = arctan x имеет единственный ноль ( x = 0 );

функция y = arccot x нулей не имеет.

Для продолжения скачивания необходимо собрать картинку:



Дифференциал суммы, произведения и частного функций


Узнать стоимость за 15 минут
  • Тип работы
  • Часть диплома
  • Дипломная работа
  • Курсовая работа
  • Контрольная работа
  • Реферат
  • Научно - исследовательская работа
  • Отчет по практике
  • Ответы на билеты
  • Тест/экзамен online
  • Монография
  • Эссе
  • Доклад
  • Компьютерный набор текста
  • Компьютерный чертеж
  • Рецензия
  • Перевод
  • Репетитор
  • Бизнес-план
  • Конспекты
  • Проверка качества
  • Единоразовая консультация
  • Аспирантский реферат
  • Магистерская работа
  • Научная статья
  • Научный труд
  • Техническая редакция текста
  • Чертеж от руки
  • Диаграммы, таблицы
  • Презентация к защите
  • Тезисный план
  • Речь к диплому
  • Доработка заказа клиента
  • Отзыв на диплом
  • Публикация статьи в Вак
  • Публикация статьи в Scopus
  • Дипломная работа MBA
  • Повышение оригинальности
  • Шрифт, pt
  • 12 pt
  • 14 pt
  • Другой
Прикрепить файл
Заказать