Интегрирование тригонометрических функций.

Множество задач сводится к нахождению интегралов трансцендентных функций, содержащих тригонометрические функции. В данной статье сгруппируем наиболее часто встречающиеся виды подынтегральных функций и на примерах рассмотрим методы их интегрирования.

Начнем с интегрирования синуса, косинуса, тангенса и котангенса.

Из таблицы первообразных сразу заметим, что и .

Метод подведения под знак дифференциала позволяет вычислить неопределенные интегралы функций тангенса и котангенса:

Поясним, как были найдены формулы и, находящиеся в таблице первообразных.

Разберем первый случай, второй абсолютно аналогичен.

Пришли к задаче интегрирования иррациональной функции. Здесь нам также поможет метод подстановки:

Осталось провести обратную замену и t = sinx :

Отдельно хочется остановиться на интегралах, содержащих степени тригонометрических функций, вида .

Подробно о принципах их нахождении можете ознакомиться в разделе интегрирование с использованием рекуррентных формул. Если изучите вывод этих формул, то без особого труда сможете брать интегралы вида , где m и n – натуральные числа.

Когда тригонометрические функции идут в комбинациях с многочленами или показательными функциями, то применяется метод интегрирования по частям. В этом разделе даны рекомендации для нахождения интегралов , .

Максимум творчества приходится вкладывать, когда подынтегральная функция содержит тригонометрические функции с различными аргументами.

Здесь на помощь приходят основные формулы тригонометрии. Так что выписывайте их на отдельный листочек и держите перед глазами.

Найти множество первообразных функции .

Формулы понижения степени дают и .

Знаменатель представляет собой формулу синуса суммы, следовательно,

Приходим к сумме трех интегралов.

Подынтегральные выражения, содержащие тригонометрические функции, иногда можно свести к дробно рациональным выражениям, используя стандартную тригонометрическую подстановку.

Выпишем тригонометрические формулы, выражающие синус, косинус, тангенс через тангенс половинного аргумента:

При интегрировании нам также понадобится выражение дифференциала dx через тангенс половинного угла.

Так как , то

То есть, , где .

Найти неопределенный интеграл .

Применим стандартную тригонометрическую подстановку:

Таким образом, .

Разложение на простейшие дроби подынтегральной функции приводит нас к сумме двух интегралов:

Осталось провести обратную замену :

Формулы, выражающие тригонометрические функции через тангенс их половинного аргумента, не являются тождествами. Поэтому, полученное выражение является множеством первообразных функции только на области своего определения.



Найти три первых отличных от нуля члена
Дифференциал функции


Узнать стоимость за 15 минут
  • Тип работы
  • Часть диплома
  • Дипломная работа
  • Курсовая работа
  • Контрольная работа
  • Реферат
  • Научно - исследовательская работа
  • Отчет по практике
  • Ответы на билеты
  • Тест/экзамен online
  • Монография
  • Эссе
  • Доклад
  • Компьютерный набор текста
  • Компьютерный чертеж
  • Рецензия
  • Перевод
  • Репетитор
  • Бизнес-план
  • Конспекты
  • Проверка качества
  • Единоразовая консультация
  • Аспирантский реферат
  • Магистерская работа
  • Научная статья
  • Научный труд
  • Техническая редакция текста
  • Чертеж от руки
  • Диаграммы, таблицы
  • Презентация к защите
  • Тезисный план
  • Речь к диплому
  • Доработка заказа клиента
  • Отзыв на диплом
  • Публикация статьи в Вак
  • Публикация статьи в Scopus
  • Дипломная работа MBA
  • Повышение оригинальности
  • Шрифт, pt
  • 12 pt
  • 14 pt
  • Другой
Прикрепить файл
Заказать