Эффективные методы решения

определенных и несобственных интегралов

Данная статья содержит дополнительные материалы по методам решения определенных и несобственных интегралов. Предполагается, что читатель владеет средними или высокими навыками интегрирования. Если это не так, пожалуйста, начните с азов, предназначенных для чайников: Неопределенный интеграл, примеры решений.

Где неопределенный интеграл – там неподалёку и Определенный интеграл, с формулой Ньютона-Лейбница вы тоже должны быть знакомы не понаслышке. Кроме того, уметь решать простейшие задачи на вычисление площади плоской фигуры.

Урок предназначен для тех, кто хочет научиться быстрее и эффективнее решать определенные и несобственные интегралы. Сначала я рассмотрю особенности интегрирования четной и нечетной функции по симметричному относительно нуля интервалу. Затем мы разберем задачу о нахождении площади круга с помощью определенного интеграла. Эта задача важна еще и тем, что знакомит вас с распространенным приемом интегрирования определенного интеграла – тригонометрической подстановкой. Она еще нигде не рассматривалась – новый материал!

Второй раздел предназначен для читателей, знакомых с несобственными интегралами. Аналогично, рассмотрим несобственные интегралы от четных, нечетных функций по симметричному интервалу. В том числе более редкие типы несобственных интегралов, которые не вошли в основную статью: когда нижний предел стремится к «минус бесконечности», когда оба предела стремятся к бесконечности, когда в обоих концах отрезка интегрирования функция терпит бесконечный разрыв (это уже интеграл второго рода). И совсем редкий несобственный интеграл – с точкой разрыва на отрезке интегрирования.

Метод решения определенного интеграла от четной функции

по симметричному относительно нуля отрезку

Рассмотрим определенный интеграл вида . Легко заметить, что отрезок интегрирования симметричен относительно нуля.

Если функция подынтегральная является чётной, то интеграл можно вычислить по половине отрезка, а результат – удвоить: .

Многие догадались, почему так, тем не менее, рассмотрим конкретный пример с чертежом:

Вычислить определенный интеграл

О чётности функции много говорилось в методическом материале Графики и свойства элементарных функций. Повторим один раз: функция является чётной, если для неё выполняется равенство . Как проверить функцию на чётность? Нужно вместо «икс» подставить .

В данном случае:

, значит, данная функция является чётной.

Согласно правилу, на симметричном относительно нуля отрезке наш интеграл от чётной функции можно вычислить следующим образом:

А сейчас геометрическая интерпретация. Да, продолжаем мучить несчастную параболу….

Любая чётная функция, в частности , симметрична относительно оси :

Определенный интеграл численно равен площади плоской фигуры, которая заштрихована зеленым цветом. Но, в силу чётности подынтегральной функции, а значит, симметричности её графика относительно оси , достаточно вычислить площадь фигуры, заштрихованной синим цветом, а результат – удвоить. Одинаковые же половинки!

Именно поэтому справедливо действие

Аналогичная история происходит с любой чётной функцией по симметричному относительно нуля отрезку:

Некоторые скажут: «Да зачем это всё нужно, можно ведь и так вычислить определенный интеграл». Можно. Давайте вычислим:

Но удобно ли было подставлять отрицательный нижний предел? Не очень-то. Кстати, ненулевой процент студентов допустит ошибку в знаках. Гораздо проще и приятнее подставить ноль. Замечу, что это еще был простой демонстрационный пример, на практике всё бывает хуже.

Кроме того, рассматриваемый прием часто применяется при вычислении двойных интегралов, тройных интегралов, где вычислений и так хватает.

Короткий разминочный пример для самостоятельного решения:

Вычислить определенный интеграл

Полное решение и ответ в конце урока.

Обратите внимание, что когда вам предложено просто вычислить определенный интеграл, то чертеж выполнять не нужно! Иллюстрация к Примеру 1 дана только для того, чтобы было понятно правило. Как раз данному моменту посвящена следующая простая задачка:

1) Вычислить определенный интеграл .

2) Вычислить площадь плоской фигуры, ограниченной линиями и осью на интервале .

Это две разные задачи! Об этом уже говорилось в статье Как вычислить площадь плоской фигуры? Сначала разберемся с первым пунктом:

1) Подынтегральная функция является чётной, отрезок интегрирования симметричен относительно нуля, поэтому:

Определенный интеграл получился отрицательным и так бывает!

2) Теперь найдем площадь плоской фигуры. Вот здесь без чертежа обойтись трудно:

Если у вас возникло затруднение с наивным косинусом, пожалуйста, обратитесь к статье Геометрические преобразования графиков.

На отрезке график функции расположен ниже оси , поэтому:

Площадь не может быть отрицательной, именно поэтому в формуле вычисления площади добавляют минус (также см. пример 3 урока Определенный интеграл. Как вычислить площадь фигуры).

Заметьте, что чётность косинуса никто не отменял, поэтому мы опять споловинили отрезок, и удвоили интеграл.

Вычисление площади круга с помощью определенного интеграла

Это очень важная задача, поскольку будет рассмотрен типовой интеграл и приём решения, который неоднократно встретится в будущем.

Но сначала небольшое напоминание по уравнению окружности. Уравнение вида задаёт окружность с центром в точке радиуса . В частности, уравнение задаёт окружность радиуса с центром в начале координат.

Вычислить площадь круга, ограниченного окружностью, заданной уравнением

– это окружность с центром в начале координат радиуса .

Сначала вычислим площадь круга с помощью известной школьной формулы. Если радиус круга , то его площадь равна:

Для того чтобы вычислить площадь круга с помощью определенного интеграла, необходимо из уравнения окружности выразить функцию «игрек» в явном виде:

Верхняя полуокружность задается уравнением

Нижняя полуокружность задается уравнением

Особые параноики, как я, могут подставить несколько точек окружности в эти уравнения, и убедиться в справедливости вышеизложенных утверждений.

Как вычислить площадь круга? В данном примере круг симметричен относительно начала координат, поэтому достаточно вычислить площадь сектора в 1-й четверти (заштрихован синим цветом), затем результат умножить на 4.

Такой же, но неопределенный интеграл рассматривался в примере 6 урока Сложные интегралы, он решался длительным и трудоёмким методом сведения интеграла к самому себе. Можно пойти тем же путём, но для определенного интеграла существует удобный и эффективный метод тригонометрической замены:

Проведём замену:

Почему именно такая замена, очень скоро станет понятно, а пока найдем дифференциал:

Выясним, во что превратится корень, я распишу очень подробно:

Если в ходе решения вы не сможете догадаться применить формулу наподобие , то, увы, схлопочете от преподавателя «приходите в следующий раз».

После преобразования корня отчетливо видно, почему проведена замена , особое внимание обращаю на коэффициент при синусе – «двойке», этот коэффициент нужно подбирать таким образом, чтобы при возведении в квадрат всё хорошо вынеслось за скобки и из-под корня.

Осталось вычислить новые пределы интегрирования:

Если , то

Новый нижний предел интегрирования:

Новый верхний предел интегрирования:

Площадь сектора необходимо умножить на 4, следовательно, площадь всей окружности:

Вероятно, у некоторых возник вопрос, зачем вообще мучиться с интегралом, если есть короткая школьная формула ? А фишка состоит в том, что возможность очень точно вычислить площадь круга появилась только с развитием математического анализа (хотя уже в древности площадь круга рассчитывали с приличной точностью).

Разобранный пример можно решить в общем виде, то есть найти площадь круга, ограниченного окружностью произвольного радиуса: . В результате получится как раз формула !

Следует отметить, что к решению данной задачи можно было применить и другой подход – вычислить площадь верхнего полукруга с помощью интеграла , а затем удвоить результат. Но в силу чётности подынтегральной функции решение элементарно сводится к оптимальной версии:

Еще раз подчёркиваю важность проведенной тригонометрической замены, она встретится на практике ни раз и ни два. Поэтому для закрепления материала чуть более сложное задание для самостоятельного решения:

Вычислить определенный интеграл

По условию требуется вычислить определенный интеграл, поэтому чертеж выполнять не нужно. Хорошо подумайте над коэффициентом в замене . Если возникнут трудности с интегралом после замены, вернитесь к уроку Интегралы от тригонометрических функций. Будьте внимательны! Полное решение и ответ в конце урока.

Метод решения определенного интеграла от нечетной функции

по симметричному относительно нуля отрезку

Рассмотрим тот же определенный интеграл с симметричным относительно нуля отрезком интегрирования: .

Если подынтегральная функция является нечётной, то .

Почему такой интеграл равен нулю?

Вычислить определенный интеграл

Вот, заодно и график функции , который ещё нигде у меня не встречался, график представляет собой перевёрнутую кубическую параболу.

Проверим нашу функцию на четность/нечетность:

, значит, данная функция является нечётной, и её график симметричен относительно начала координат. Из симметрии графика следует равенство площадей, которые заштрихованы красным и синим цветом.

При вычислении определенного интеграла площадь, которая заштрихована синим цветом, формально является отрицательной. А площадь, которая заштрихована красным цветом – положительной. Поскольку площади равны и формально противоположны по знаку, то они взаимно уничтожаются, следовательно .

И еще раз подчеркиваю разницу между заданиями:

1) Любой определенный интеграл (само собой он должен существовать) – это всё равно формально площадь (пусть даже отрицательная). В частности, поэтому , так как в силу нечётности функции площади взаимно уничтожатся. Что и проиллюстрировано на конкретном примере.

2) Задача на нахождение площади – это совершенно другая задача. Так, если бы нам было предложено найти площадь фигуры в данном примере, то её следовало бы вычислить следующим образом:

Еще несколько коротких примеров на тему данного правила:

И, аналогично для любой нечетной функции и симметричного относительно нуля отрезка.

Применять ли данный метод на практике? На самом деле вопрос не такой простой. Когда вам предложен сложный пример с большим количеством вычислений, то можно, и даже уместно указать, что такой интеграл равен нулю, сославшись на нечетность функции и симметричность отрезка интегрирования относительно нуля. Как говорится, знание – сила, а незнание – рабочая сила.

Но когда вам предложен короткий пример, то преподаватель вполне обоснованно может заставить прорешать его подробно: взять интеграл и подставить пределы интегрирования по формуле Ньютона-Лейбница. Например, вам предложено вычислить тот же определенный интеграл . Если вы сразу запишите, что и поясните словами, почему получается ноль, то это будет не очень хорошо. Намного лучше «прикинуться дурачком» и провести полное решение:

А то, что интеграл равен нулю, вы будете знать заранее ;-) И это знание 100%-но позволит избежать ошибки.

Метод решения несобственного интеграла с бесконечным нижним пределом

Второй раздел статьи предназначен для тех, кто хорошо разобрался с уроком Несобственные интегралы. Примеры решения, или, по крайне мере, понял бОльшую его часть. Речь пойдет о несобственных интегралах первого рода с бесконечным нижним пределом: .

Вычислить несобственный интеграл или установить его расходимость.

Чем отличается данный интеграл от «обычного» несобственного интеграла с бесконечным верхним пределом? По технике решения практически ничем. Так же нужно найти первообразную (неопределенный интеграл), так же нужно использовать предел при вычислении интеграла. Отличие состоит в том, что необходимо устремить нижний предел интегрирования к «минус бесконечности»: .

Из вышесказанного следует очевидная формула для вычисления такого несобственного интеграла:

В данном примере, подынтегральная функция непрерывна на и:

, то есть, несобственный интеграл расходится.

Вот тут, главное, быть аккуратным в знаках, и не забывать, что . Нужно внимательно разобраться, что куда стремится.

Вычислить несобственный интеграл или установить его расходимость.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Метод решения несобственного интеграла

с бесконечными пределами интегрирования

Очень интересный случай. Несобственный интеграл первого рода с бесконечными пределами интегрирования имеет следующий вид:

Как его решить? Данный интеграл нужно представить в виде суммы двух несобственных интегралов:

(всё гениальное просто) и смотреть по ситуации:

Примечание: вместо ноля может быть любое число, но ноль обычно удобнее всего.

Вычислить несобственный интеграл или установить его расходимость.

Подынтегральная функция непрерывна на всей числовой прямой. Представляем интеграл в виде суммы двух интегралов:

и разделываемся с ними по отдельности:

, то есть несобственный интеграл существует и сходится.

Теперь обратим внимание на подынтегральную функцию. Она является чётной.

В несобственных интегралах с бесконечными пределами (а значит, симметричным интервалом интегрирования) чётностью пользоваться МОЖНО. Аналогично определенному интегралу, промежуток выгодно споловинить, а результат – удвоить:

Почему такое возможно? График подынтегральной чётной функции симметричен относительно оси . Следовательно, если половина площади конечна (интеграл сходится) – то симметричная половина площади тоже конечна. Если половина площади бесконечна (интеграл расходится), следовательно, симметричная половина тоже будет расходиться. И не забываем о третьем случае: если половины не существует, то второй, и всего интеграла – тоже. Например:

– данного предела не существует, а значит, не существует и несобственного интеграла .

Переходим ещё к более любопытному случаю:

Исследовать несобственный интеграл на сходимость.

Обратите внимание на задание – здесь в условии уже не констатируется факт существования интеграла.

Подынтегральная функция непрерывна на всей числовой прямой, и мы в академичном стиле распиливаем пациента на две части:

И, несмотря на то, что оба интеграла по отдельности расходятся – итогового интеграла в общем случае не существует, ибо сумма не определена. Почему? Потому что переменная «а» может стремиться к «минус бесконечности», например, БЫСТРЕЕ, чем переменная «бэ» к «плюс бесконечности» (или наоборот).

Но существует особый частный случай – когда обе переменные стремятся к бесконечностям одинаково. Это выражается пределом:

и называется сходимостью интеграла по Коши. Само же значение предела называют главным значением несобственного интеграла.

И поскольку условие требовало от нас исследования, то здесь будет грамотным следующий ответ: в общем случае несобственного интеграла не существует, однако имеет место сходимость по Коши и главное значение интеграла равно нулю. Главное значение принято обозначать так:

А сейчас очень важный момент: подынтегральная функция является нечётной, и как вы правильно догадываетесь, в несобственных интегралах с бесконечными пределами нечётностью пользоваться НЕ СЛЕДУЕТ.

В этом состоит отличие от определенного интеграла. Там можно смело записать, что , а здесь так поступать не следует. Почему? Потому что в ряде случаев, как, например, в рассмотренном примере, получится автоматическая ошибка , что не соответствует действительности.

Тонкость же состоит в том, что интегралы от некоторых нечётных функций и в самом деле равны нулю! И как раз этой тонкости посвящен следующий пример для самостоятельного решения:

Вычислить несобственный интеграл или установить его расходимость.

Полное решение и ответ в конце урока.

Метод решения несобственного интеграла второго рода

с точками разрыва на обоих концах отрезка

Заключительные пункты этой статьи предназначены для читателей, которые хорошо разобрались с несобственными интегралами второго рода на уроке Несобственные интегралы. Примеры решений. Рассмотрим другие разновидности несобственных интегралов второго рода. Ничего сложного!

Многие выкладки предыдущего параграфа будут справедливы и сейчас.

Сразу конкретная задача:

Вычислить несобственный интеграл или установить его расходимость.

Подынтегральная функция терпит бесконечные разрывы в обоих концах отрезка интегрирования. Изобразим подынтегральную функцию на чертёже:

Геометрически данный несобственный интеграл представляет собой площадь бесконечной криволинейной трапеции, которая не ограничена сверху.

Методика решения точно такая же, как и в предыдущем параграфе – разделяй и властвуй:

А уж интегралы правой части рассматривались во втором разделе урока Несобственные интегралы. Примеры решений.

Но, вместо этого замечаем, что подынтегральная функция является чётной. Чётность использовать МОЖНО. В этом легко убедиться и по чертежу. Таким образом, интеграл целесообразно споловинить, а результат удвоить. Решаем наиболее рациональным способом:

Подынтегральная функция терпит бесконечные разрывы в точках . Данная функция является чётной, а интервал интегрирования симметричен относительно нуля.

Ответ: , то есть, несобственный интеграл сходится

Исследовать несобственный интеграл на сходимость ;)

Это пример для самостоятельного решения. Всё, как и в предыдущем параграфе – нечетностью функции пользоваться НЕ НУЖНО. Аккуратно делим интеграл на две части и исследуем сходимость по типовому алгоритму. Полное решение и ответ в конце урока.

Не редкость, когда подынтегральная функция не является четной или нечетной, да и отрезок интегрирования не симметричен относительно нуля. Например, рассмотрим несобственный интеграл . Подынтегральная функция опять терпит бесконечные разрывы в обоих концах отрезка интегрирования. Алгоритм такой же, делим интеграл на два интеграла:

Интегралы правой части разобраны на уроке Несобственные интегралы. Примеры решений. В качестве факультатива выясните, существует ли этот интеграл в общем случае, и если существует – то сходится или нет.

Метод решения несобственного интеграла

с точкой разрыва на отрезке интегрирования

Если честно, такой пример встречался в моей практике всего один раз (по крайне мере, вспомнил лишь один), поэтому я ограничусь только обзором.

Пример опять же будет в известной степени условным, первое, что в голову пришло. Рассмотрим несобственный интеграл . На концах отрезка интегрирования всё хорошо. Но подынтегральная функция терпит бесконечный разрыв прямо на отрезке в точке . Подынтегральная функция является четной, но это не имеет никакого значения, поскольку отрезок интегрирования не симметричен относительно нуля.

Метод уже состарился, как хмм… чешуя динозавра. Представим несобственный интеграл в виде суммы двух несобственных интегралов:

Интегралы правой части вам уже знакомы. А проговаривать алгоритм в третий раз не буду, смотрите предыдущие два параграфа)

Решения и ответы:

Новые пределы интегрирования:

Подынтегральная функция непрерывна на

Подынтегральная функция непрерывна на всей числовой прямой.

Представим интеграл в виде суммы двух интегралов:

Представим интеграл в виде суммы двух интегралов:

Вычислим второй интеграл:

– интеграл сходится и равен нулю.

Ответ:

Примечание 1: В частности, равно нулю и главное значение интеграла

Примечание 2: Будет серьезной оплошностью сразу записать, что , пользуясь нечетностью подынтегральной функции и симметричностью интервала интегрирования. Стандартный алгоритм обязателен.

Пример 13: Решение:

Подынтегральная функция терпит бесконечные разрывы в точках .

Представим данный интеграл в виде суммы двух интегралов:

Вычислим первый интеграл:

Вычислим второй интеграл:

Таким образом, интеграла в общем случае не существует. Исследуем сходимость интеграла по Коши:

Ответ: интеграл сходится лишь по Коши, главное значение

Автор: Емелин Александр

(Переход на главную страницу)

Качественные работы без плагиата – Zaochnik.com



Как вычислить определитель?