Как найти частное решение ДУ приближённо с помощью ряда?

Продолжая изучать практические приложения теории рядов, рассмотрим ещё одну распространённую задачу, название которой вы видите в заголовке. И, чтобы не чувствовать себя газонокосилкой на протяжении урока, давайте сразу же разберёмся в сути задания. Три вопроса и три ответа:

Что нужно найти? Частное решение дифференциального уравнения. Намёк между строк шепчет, что к данному моменту желательно хотя бы понимать, что такое дифференциальное уравнение и что такое его решение.

КАК по условию требуется это решение? Приближённо – с помощью ряда.

И третий закономерный вопрос: зачем? Будучи сторонником конкретики, вернусь к простейшему дифференциальному уравнению . В ходе первой лекции по диффурам мы нашли его общее решение (множество экспонент) и частное решение , соответствующее начальному условию . График функции – это самая обычная линия, которую нетрудно изобразить на чертеже.

Но то элементарный случай. На практике встречается великое множество дифференциальных уравнений, неразрешимых аналитически точно (по крайне мере, известными на сегодняшний день способами). Иными словами, как ни крути такое уравнение – проинтегрировать его не удастся. А закавыка состоит в том, что общее решение (семейство линий на плоскости) может существовать. И тогда на помощь приходят методы вычислительной математики.

Встречаем нашу радость!

Типовая задача формулируется следующим образом:

Найти приближённо частное решение дифференциального уравнения , удовлетворяющее начальному условию , в виде трёх (реже – 4-х, 5-х) отличных от нуля членов ряда Тейлора.

Искомое частное решение раскладывается в данный ряд по известной формуле:

Единственное, здесь вместо буквы «эф» используется «игрек» (так уж повелось).

Идея и смысл тоже знакомы: для некоторых диффуров и при некоторых условиях (не будем вдаваться в теорию) построенный степенной ряд будет сходиться к искомому частному решению . То есть, чем больше членов ряда мы рассмотрим, тем точнее график соответствующего многочлена приблизит график функции .

Следует отметить, что вышесказанное применимо и к самым простым случаям. Проведём незамысловатое детское исследование на том же горшке:

Найти приближённо частное решение дифференциального уравнения , удовлетворяющее начальному условию в виде четырёх первых отличных от нуля членов ряда Тейлора.

Решение: в условиях данной задачи , поэтому общая формула Тейлора трансформируется в частный случай разложения в ряд Маклорена:

Немного забегая вперёд, скажу, что в практических заданиях значительно чаще встречается именно этот, более компактный ряд.

Занесите обе рабочие формулы в свой справочник.

Разбираемся со значениями . Этапы решения удобно занумеровать:

0) На нулевом шаге записываем значение , которое всегда известно из условия. В тетради итоговые результаты пунктов желательно обводить в кружок, чтобы они были хорошо видны и не затерялись в решении. Мне по техническим причинам сподручнее выделять их жирным шрифтом. Кроме того, отмечаем, что данное значение не равно нулю! Ведь по условию требуется найти четыре отличных от нуля членов ряда.

1) Вычислим . Для этого в правую часть исходного уравнения вместо «игрека» подставляем известное значение :

2) Вычислим . Сначала находим вторую производную:

Подставляем в правую часть найдённое в предыдущем пункте значение :

В распоряжении уже три ненулевых члена разложения, нужен ещё один:

3) Находим третью производную – это производная от второй производной:

Так получается, что в данном задании каждая следующая производная оказывается выраженной через предыдущую производную.

Подставляем в правую часть найденное в предыдущем пункте значение :

Теперь подставим найденные значения в формулу Маклорена и аккуратно проведём упрощения:

Ответ:

Условие рассматриваемого задания, как правило, не требует чертежа, но я построю демонстрационные графики, чтобы наглядно разъяснить сущность выполненных действий. Изобразим точное частное решение и его приближение :

Как видите, уже 4 члена ряда дают недурственную точность – на довольно длинном участке зелёная «дуга» кубической функции практически совпала с «красным» идеальным решением, о чём нам сигнализирует коричневый цвет. При этом оба графика проходят через точку, соответствующую заданному начальному условию, и естественно, что вблизи неё точность будет максимальной.

Очевидно, что чем больше членов ряда мы рассмотрим, тем лучше соответствующий многочлен приблизит экспоненту.

Неудивительно, что в решении часто задействованы производные высших порядков:

четвёртая производная – это производная от третьей производной;

пятая производная – это производная от четвёртой производной и т.д.;

– обозначения 6-ой, 7-ой, 8-ой, 9-ой и 10-й производных соответственно.

Помимо римских цифр, в широком обиходе и такой вариант:

– обязательно со скобками, чтобы не путать производную с «игреком в степени».

В собственной практике приходилось находить 10-ую производную, не случайно я так подробно и остановился на обозначениях.

Для успешного выполнения данной задачи необходимо уметь дифференцировать неявную функцию, причём дифференцировать достаточно уверенно. И, прежде чем перейти к конкретным примерам, пожалуйста, проанализируйте, понятны ли вам следующие производные:

Алгоритм и технику решения начнём оттачивать с общего случая разложения в ряд Тейлора:

Найти приближённо частное решение дифференциального уравнения , удовлетворяющее начальному условию в виде трёх первых отличных от нуля членов ряда Тейлора.

Решение начинается стандартной фразой:

Разложение частного решения дифференциального уравнения при начальном условии имеет вид:

В данной задаче , следовательно:

Теперь последовательно находим значения – до тех пор, пока не будут получены три ненулевых результата. Если повезёт, то отличны от нуля будут – это идеальный случай с минимальным количеством работы.

Нарезаем пункты решения:

0) По условию . Вот и первый успех.

1) Вычислим . Сначала разрешим исходное уравнение относительно первой производной, то есть, выразим . Подставим в правую часть известные значения :

Получена баранка и это не есть хорошо, поскольку нас интересуют ненулевые значения. Однако ноль – тоже результат, который не забываем обвести в кружок или выделить каким-нибудь другим способом.

2) Находим вторую производную и подставляем в правую часть известные значения :

3) Находим – производную от второй производной:

Вообще, задание чем-то напоминает Сказку про Репку, когда дедка, бабка и внучка зовут на помощь жучку, кошку и т.д. И в самом деле, каждая следующая производная выражается через своих «предшественников».

Подставим в правую часть известные значения :

Третье ненулевое значение. Вытащили Репку.

Аккуратно и внимательно подставляем «жирные» числа в нашу формулу:

Ответ: искомое приближенное разложение частного решения:

В рассмотренном примере попался всего один ноль на втором месте, и это не так уж плохо. В общем случае нулей может встретиться сколько угодно и где угодно. Повторюсь, их очень важно выделять наряду с ненулевыми результатами, чтобы не запутаться в подстановках на завершающем этапе.

Вот, пожалуйста, круглощёкий на самом первом месте:

Найти приближённо частное решение дифференциального уравнения , соответствующее начальному условию , в виде трёх первых отличных от нуля членов ряда Тейлора.

Примерный образец оформления задачи в конце урока. Пункты алгоритма можно и не нумеровать (оставляя, например, пустые строки между шагами), но начинающим рекомендую придерживаться строгого шаблона.

Рассматриваемая задача требует повышенного внимания – если допустить ошибку на каком-либо шаге, то всё остальное тоже будет неверным! Поэтому ваша ясная голова должна работать как часы. Увы, это не интегралы или диффуры, которые надёжно решаются и в утомлённом состоянии, поскольку позволяют выполнить эффективную проверку.

Представить приближенно частное решение ДУ, соответствующее заданному начальному условию , в виде суммы трех первых отличных от нуля членов степенного ряда.

Решение: в принципе, можно сразу записать разложение Маклорена, но оформление задачи академичнее начать с общего случая:

Разложение частного решения дифференциального уравнения при начальном условии имеет вид:

В данном случае , следовательно:

0) По условию .

Ну что поделать…. Будем надеяться, что нулей встретится поменьше.

1) Вычислим . Первая производная уже готова к употреблению. Подставим значения :

2) Найдём вторую производную:

И подставим в неё :

Резво дело пошло!

3) Находим . Распишу очень подробно:

Заметьте, что к производным применимы обычные алгебраические правила: приведение подобных слагаемых на последнем шаге и запись произведения в виде степени: (там же).

Подставим в всё, что нажито непосильным трудом :

Три ненулевых значения рождены.

Подставляем «жирные» числа в формулу Маклорена, получая тем самым приближенное разложение частного решения:

Ответ:

Для самостоятельного решения:

Представить приближенно частное решение ДУ, соответствующее заданному начальному условию , в виде суммы трех первых отличных от нуля членов степенного ряда.

Примерный образец оформления в конце урока.

Как видите, задача с частным разложением в ряд Маклорена оказалась даже труднее общего случая. Сложность рассматриваемого задания, как мы только что убедились, состоит не столько в самом разложении, сколько в трудностях дифференцирования. Более того, порой, приходится находить 5-6 производных (а то и больше), что повышает риск ошибки. И в завершении урока предлагаю пару задач повышенной сложности:

Решить дифференциальное уравнение приближённо с помощью разложения частного решения в ряд Маклорена, ограничившись тремя первыми ненулевыми членами ряда

Решение: перед нами диффур второго порядка, но это практически не меняет дела. По условию и нам сразу же предложено воспользоваться рядом Маклорена, чем мы не преминем воспользоваться. Запишем знакомое разложение, прихватив на всякий пожарный побольше слагаемых:

Алгоритм работает точно так же:

0) – по условию.

1) – по условию.

2) Разрешим исходное уравнение относительно второй производной: .

И подставим :

Первое ненулевое значение

Щёлкаем производные и выполняем подстановки:

3)

Подставим и :

4)

Подставим :

Второе ненулевое значение.

5) – по ходу дела приводим подобные производные.

Подставим :

6)

Подставим :

Наконец-то. Впрочем, бывает и хуже.

Таким образом, приближенное разложение искомого частного решения:

Ответ:

Миниатюра для самостоятельного решения:

Найти три отличных от нуля члена разложения в ряд Маклорена частного решения дифференциального уравнения второго порядка при начальных условиях .

Я хочу, чтобы все читатели решили это задание. Ведь курс математического анализа потихоньку заканчивается…. пройдут годы, но когда-нибудь каждого из вас посетит непреодолимое желание что-нибудь продифференцировать. Поэтому не упускайте редкую возможность начать прямо сейчас =)

Решения и ответы:

Пример 3: Решение: разложение частного решения ДУ при начальном условии имеет вид: .

В данном случае: .

В правую часть подставим :

Найдём

Подставим :

Найдём

Подставим :

Таким образом, искомое приближенное разложение частного решения:

Ответ:

Пример 5: Решение: разложение частного решения ДУ при начальном условии имеет вид: .

В данном случае , следовательно:

.

Разрешим исходное уравнение относительно .

Подставим :

Найдём

Подставим :

Найдём третью производную:

Подставим :

Таким образом, искомое приближенное разложение частного решения:

Ответ:

Пример 7: Решение: используем разложение Маклорена:

В исходное уравнение подставим :

Найдём

Подставим :

Найдём

Подставим :

Найдём

Подставим :

Найдём

Подставим :

Таким образом, приближенное разложение искомого частного решения:

Ответ:



Определение векторного произведения


Узнать стоимость за 15 минут
  • Тип работы
  • Часть диплома
  • Дипломная работа
  • Курсовая работа
  • Контрольная работа
  • Реферат
  • Научно - исследовательская работа
  • Отчет по практике
  • Ответы на билеты
  • Тест/экзамен online
  • Монография
  • Эссе
  • Доклад
  • Компьютерный набор текста
  • Компьютерный чертеж
  • Рецензия
  • Перевод
  • Репетитор
  • Бизнес-план
  • Конспекты
  • Проверка качества
  • Единоразовая консультация
  • Аспирантский реферат
  • Магистерская работа
  • Научная статья
  • Научный труд
  • Техническая редакция текста
  • Чертеж от руки
  • Диаграммы, таблицы
  • Презентация к защите
  • Тезисный план
  • Речь к диплому
  • Доработка заказа клиента
  • Отзыв на диплом
  • Публикация статьи в Вак
  • Публикация статьи в Scopus
  • Дипломная работа MBA
  • Повышение оригинальности
  • Шрифт, pt
  • 12 pt
  • 14 pt
  • Другой
Прикрепить файл
Заказать