Как вычислить двойной интеграл? Примеры решений

Прозвучал удар гонга, который открывает второй раунд в бою с двойными интегралами. Если вы недавно надели перчатки или вообще боксируете с грушей, то, пожалуйста, начните с первого раунда Двойные интегралы для чайников. Настоятельно рекомендую разобраться со всеми примерами вводного урока без халтуры, это очень важно. К тому же, добрый дядя Саша нарисовал много картинок, которые можно распечатать и наклеить у себя в туалете. Помните, что Коперник свои блестящие открытия в астрономии делал именно там.

Однако задорное получилось вступление…. Задумался вот… почему? Да потому что мне хорошо. А отчего хорошо, поясню в конце статьи.

Вспоминаем общую запись двойного интеграла:

В первой статье Двойные интегралы для чайников я очень подробно рассмотрел понятие двойного интеграла, алгоритм его решения, важнейшие задачи на обход области интегрирования. Также были прорешаны простейшие двойные интегралы в примерах на нахождение площади плоской фигуры.

Снова посмотрим на общую запись двойного интеграла и заметим, что в нём притаилась функция двух переменных . А когда речь заходит о функции двух переменных, то это часто попахивает частными производными второго порядка. Поэтому для освоения примеров вам необходимо уметь более или менее уверенно их находить.

В большинстве практических задач требуется формально вычислить двойной интеграл, но, помимо этого, он обладает отличным геометрическим смыслом – с помощью двойного интеграла помимо площади можно вычислить еще и объём. Геометрический смысл двойного интеграла поясню ниже на конкретных примерах.

Начинаем набивать наш двойной интеграл разнообразной начинкой:

Вычислить двойной интеграл

,

Изменить порядок интегрирования и вычислить двойной интеграл вторым способом.

Решение: Изобразим область интегрирования на чертеже:

Напоминаю, что выполнение чертежа – необходимый начальный этап решения. Чертёж крайне важно выполнить правильно и точно, поскольку ошибка в графике незамедлительно запорет всё задание.

Выберем следующий порядок обхода:

Вопросы порядка обхода области интегрирования, я комментировать практически не буду, пожалуйста, смотрите статью Двойные интегралы для чайников.

Обратите внимание на следующее действие: в данном случае можно вынести «икс» из внутреннего интеграла во внешний интеграл. Почему? Во внутреннем интеграле интегрирование проводится по «игрек», следовательно, «икс» считается константой. А любую константу можно вынести за знак интеграла, что благополучно и сделано.

С интегралами настоятельно рекомендую разбираться по пунктам:

1) Используя формулу Ньютона-Лейбница, найдём внутренний интеграл:

Вместо «игрека» подставляем функции!

2) Результат, полученный в первом пункте, подставим во внешний интеграл , при этом ни в коем случае не забываем про «икс», который там уже находится:

Замечательно, если у вас под рукой есть микрокалькулятор, на котором можно считать обыкновенные дроби, он значительно ускорит заключительные вычисления. В последующих примерах я не буду подробно расписывать приведение дробей к общему знаменателю, а просто запишу ответ.

Выполняем вторую часть задания: изменим порядок обхода области и вычислим двойной интеграл вторым способом.

Перейдём к обратным функциям:

Для наглядности еще раз приведу чертёж, он будет точно таким же, но с другими обозначениями графиков:

Второй способ обхода области:

Вот здесь уже «икс» является «родным» для внутреннего интеграла, поэтому его нельзя вынести во внешний интеграл.

1) Используя формулу Ньютона-Лейбница, вычислим внутренний интеграл:

Вместо «икса» подставляются функции!

Всегда проявляйте повышенное внимание при подстановке пределов интегрирования.

2) Результат, полученный в первом пункте, подставим во внешний интеграл и проведём окончательные вычисления:

Результаты совпали, значит, задание выполнено верно.

Если есть время, постарайтесь всегда проводить проверку, даже если этого не требуется в условии: вычислили интеграл одним способом – затем изменили порядок обхода области и вычислили вторым способом.

Ответ:

Вычислить двойной интеграл

,

Выполнить проверку: изменить порядок интегрирования и вычислить двойной интеграл вторым способом.

Это пример для самостоятельного решения. Обратите внимание, что в двойном интеграле изначально присутствует константа. А константу можно вынести за знак двойного интеграла, в данном случае:

В ходе решения вынесение константы целесообразно проводить в момент перехода к повторным интегралам.

Как видите, свойство линейности справедливо не только для «обычных», но и для кратных интегралов. Интеграл от интеграла недалеко падает.

Самое главное потом при вычислениях вынесенную константу не потерять. А забывают о ней часто.

Примерный образец чистового оформления примера в конце урока.

Двойной интеграл как объем тела

Рассмотрим основной геометрический смысл двойного интеграла . Предполагаем, что функция существует в каждой точке плоской области и задаёт некоторую поверхность трехмерного пространства. Для определенности считаем, что , то есть поверхность располагается над плоскостью .

Согласно общей концепции интегрирования, произведение равно бесконечно малому объёму элементарного кусочка тела (посмотрите на кусок, выделенный на чертеже пунктирными линиями, и мысленно сделайте бесконечно малыми его «длину» и «ширину»). Двойной же интеграл объединяет эти бесконечно малые значения по всей области , в результате чего мы получаем суммарный (интегральный) объём всего цилиндрического бруса :

Что это за тело, думаю, понятно – снизу цилиндрический брус ограничен заштрихованной областью , а сверху – фрагментом поверхности («шапкой»).

Дополнительно поясню геометрический смысл на Примере №1. В нём мы рассматривали двойной интеграл , причём область интегрирования имела следующий вид:

Из начала координат перпендикулярно экрану монитора мысленно проведите на себя стрелку оси . Подынтегральная функция задаёт плоскость в пространстве, которая проходит над областью и ограничивает цилиндрический брус сверху, поэтому значение его объёма получилось положительным: . Да, такой вот малюсенький брусок, 1/15-я единичного «кубика».

Двойной интеграл может быть и отрицательным, в таких случаях график функции полностью (или бОльшей частью) лежит под областью . И если в задаче требуется найти именно объём тела с помощью двойного интеграла тройном этот вопрос отпадает), то к «кускам», лежащим ниже плоскости , следует добавить знак «минус» (по аналогии с площадью криволинейной трапеции, лежащей ниже оси абсцисс).

Однако на практике почти всегда встречаются задачи на формальный расчёт двойных интегралов, поэтому мы продолжим совершенствовать технику вычислений:

Вычислить двойной интеграл

,

Решение: Изобразим область интегрирования на чертеже:

После того, как корректно выполнен чертеж и правильно найдена область интегрирования, самое время разобраться с порядком обхода.

Согласно первому способу обхода, область придется разделить на две части, при этом необходимо будет вычислить следующие интегралы:

Энтузиазма, прямо скажем, мало. Проанализируем, а не проще ли использовать второй способ обхода области? Перейдем к обратным функциям, переход здесь элементарен:

Порядок обхода области:

Ну вот, совсем другое дело. И снова заметьте, что во внутреннем интеграле интегрирование осуществляется по «икс», поэтому константу можно сразу вынести во внешний интеграл

1) Найдём внутренний интеграл:

Всё-таки подстановка пределов интегрирования, порой, выглядит своеобразно. Сначала вместо «икса» мы подставили верхний предел интегрирования , затем вместо «икса» подставили нижний предел интегрирования . Будьте внимательны при подстановках!

2) Результат предыдущего пункта подставим во внешний интеграл, при этом не забываем про , который там уже находится:

Ответ:

Для тренировки можете попробовать вычислить двойной интеграл менее рациональным способом: . Результаты должны совпасть.

Вычислить двойной интеграл

,

Это пример для самостоятельного решения. Постройте область и проанализируйте, какой способ обхода области выгоднее использовать. Полное решение и ответ в конце урока.

Усложняем задачу, теперь подынтегральная функция будет представлять собой сумму. Рассмотрим еще два примера, где я остановлюсь на приёме вычисления интеграла, который типичен и эффективен для кратных интегралов:

Вычислить двойной интеграл

,

Решение: Сначала рассмотрим то, чего делать не нужно – в данном случае не следует использовать свойства линейности кратного интеграла и представлять его в виде:

Почему? Вычислений заметно прибавится!

Решение, как обычно, начинаем с построения области интегрирования:

Область незамысловата, даже штриховать не буду. В данном примере, как легко заметить, не имеет особого значения порядок интегрирования, поэтому выберем первый, более привычный вариант обхода области:

Здесь, в отличие от двух предыдущих примеров, из внутреннего интеграла ничего вынести нельзя, поскольку начинкой является сумма.

С повторными интегралами опять разбираемся по отдельности. Да, кстати, кто хочет посмотреть, как решать повторные интегралы одной строкой, пожалуйста, зайдите на страницу Готовые решения по высшей математике и закачайте архив с примерами решений кратных интегралов.

1) Сначала берём внутренний интеграл:

Хотелось бы остановиться на нескольких существенных моментах. Во-первых, о частном интегрировании. О нём я уже подробно рассказывал в статье Дифференциальные уравнения в полных дифференциалах. Вкратце повторюсь:

Если интегрирование проводится по «игрек», то переменная «икс» считается константой. И наоборот.

Тем не менее, вот нашли вы первообразную и возникли сомнения, а правильно ли она найдена? Всегда можно выполнить проверку, в данном случае следует найти частную производную по «игрек»:

Получена исходная подынтегральная функция, значит, всё в порядке.

Момент второй, подстановка пределов интегрирования. По стандартной формуле Ньютона-Лейбница сначала вместо «игреков» мы подставили , а затем – нижний предел интегрирования (нули). После подстановки должны остаться только «иксы».

И, наконец, может показаться странным результат:

Ведь можно раскрыть скобки и привести подобные слагаемые! В данном случае это сделать несложно, и чайникам, вероятно, лучше так и поступить. Но если будет не вторая, а 3-я или 4-я степень? На самом деле линейную функцию в степени выгоднее проинтегрировать, не раскрывая скобок! Данный прием я уже применял и подробно комментировал во втором параграфе урока Как вычислить объем тела вращения?

Ещё раз посмотрим, как он работает:

2) Берём оставшийся внешний интеграл:

При нахождении интеграла использован метод подведения функции под знак дифференциала. Где-нибудь возникли сомнения в правильности интегрирования? Возьмите производную по «икс» и выполните проверку!

Ответ:

Вычислить двойной интеграл

,

Это пример для самостоятельного решения. В образце решения, как и в разобранном примере, использован первый способ обхода области.

На практике немало примеров, где трудно (а то и невозможно) обойтись без микрокалькулятора-«дробовика». Рассмотрим практический пример на данную тему:

Вычислить двойной интеграл по области

Задача будет решена двумя способами, так как готовое решение у меня уже есть =) А если серьезно, второй способ будет нужен для дополнительных важных комментариев.

Решение: Изобразим область интегрирования на чертеже:

Область интегрирования тут простая, и основной гемор ожидается как раз в вычислениях.

Выберем следующий порядок обхода области:

1)

Начинающим чайникам всегда рекомендую выполнять проверку, особенно в подобных примерах: возьмите частную производную по «игрек» от первообразной и получите подынтегральную функцию .

Будьте предельно внимательны в подстановке пределов интегрирования: сначала вместо «игреков» подставляем , затем – ноль. В оформлении вполне допустимо записать один, а не несколько нолей, как это сделано в данном примере. После подстановки должны остаться только «иксы».

2) Второй шаг прост:

Перейдём к обратной функции и изменим порядок обхода области:

1) Вычислим внутренний интеграл:

Когда мы интегрируем по «икс», то переменная «игрек» считается константой. Не лишней будет и промежуточная проверка, возьмём частную производную по «икс» от найденной первообразной:

Получена подынтегральная функция, что и хотелось увидеть.

Подстановка пределов интегрирования здесь сложнее: сначала вместо «иксов» подставляем 1, затем вместо «иксов» подставляем . После подстановки должны остаться только «игреки».

Степени рекомендую оставить в виде , а не преобразовывать их в корни – будет удобнее интегрировать на втором шаге:

Результаты совпали, как оно и должно быть.

Легко заметить, что первый способ решения был заметно проще.

Всегда перед решением анализируйте – какой путь легче и короче.

Дроби в рассмотренном примере еще худо-бедно можно привести к общему знаменателю вручную. Но не удивляйтесь, если на практике получится ответ вроде , по крайне мере, в своей коллекции я нашел немало диких примеров, где без микрокалькулятора-«дробовика» фактически не обойтись.

Ответ:

Ответ получился отрицательным. Геометрически это обозначает, что график подынтегральной функции (поверхность в пространстве) полностью или бОльшей частью (не проверял) располагается ниже области интегрирования под плоскостью .

Вычислить двойной интеграл по области

Это пример для самостоятельного решения. Ответ будет целым – чтобы от своего хорошего настроения не запугать вас окончательно =). Похожие двойные интегралы встречаются в известном задачнике Кузнецова, и по этой причине пример тоже уместен. Полное решение и ответ в конце урока.

Студенты-заочники почти всегда сталкиваются с двойными интегралами наподобие тех, которые уже рассмотрены, но никто не застрахован от творческих примеров, где в подынтегральной функции есть какие-нибудь синусы, косинусы, экспоненты и т.п.

Рассмотрим заключительные примеры на данную тему:

Вычислить двойной интеграл по области

Решение: В ходе выполнения чертежа может возникнуть трудность с построением прямой , которая параллельна оси . Ничего сложного: если , то – примерно на этом уровне и следует провести прямую.

После выполнения чертежа нужно выяснить, какой порядок обхода области выгоднее применить.

Рассмотрим первый способ обхода:

Тогда:

Очевидно, что первый способ является крайне неудачным, поскольку внутренний интеграл придётся дважды брать по частям.

Но есть еще и второй способ обхода области:

Следовательно:

Выглядит гораздо привлекательнее, начинаем вычисления:

1) По формуле Ньютона-Лейбница разберемся с внутренним интегралом:

Когда мы интегрируем по «икс», то переменная «игрек» считается константой. Если возникают трудности с интегрированием, можно прибегнуть даже к такому способу: временно замените «игрек» конкретным числом, например, «пятёркой»:

.

Теперь замените «пятёрку» обратно – «игреком»:

И, конечно же, лучше сделать проверку, продифференцировав первообразную по «икс»:

Далее при подстановке пределов интегрирования сначала вместо «икса» подставляем , затем – ноль. После подстановки должны остаться только «игреки».

2) Полученный результат перемещаем во внешний интеграл, не забывая, что там уже есть и константа 4:

Ответ:

Таким образом, выбор порядка обхода иногда зависит не только от самой области интегрирования, но и от подынтегральной функции.

Вычислить двойной интеграл по области

Это пример для самостоятельного решения.

Хочется привести ещё примеры, но в первом раунде я обещал не маньячить, поэтому скрепя сердце, заканчиваю статью. Множество других примеров на вычисление двойных интегралов можно найти в соответствующем архиве на странице Готовые решения по высшей математике. Если тема проработана качественно, то рискну предположить, что многие читатели без особого труда разберутся и и в тройных интегралах – принципы решения очень похожи!

И напоследок раскрою обещанный секрет – так почему же мне сегодня хорошо?

Я много раз высказывал своим ученикам эту мудрую мысль, но они почему-то смеялись:

Хорошо должно быть каждый день!

Решения и ответы:

Пример 2: Решение: Изобразим область на чертеже:

Выберем следующий порядок обхода:

1)

2)

Перейдём к обратным функциям:

Изменим порядок обхода области:

1)

2)

Ответ:

Пример 4: Решение: Изобразим область интегрирования на чертеже.

Выберем следующий порядок обхода области:

1) ;

2)

Ответ:

Пример 6: Решение: Изобразим область интегрирования на чертеже:

Выберем следующий порядок обхода области:

1)

Ответ:

Пример 8: Решение: Изобразим область интегрирования на чертеже:

Выберем следующий порядок обхода области:

1)

2)

Ответ:

Пример 10: Решение: Изобразим область интегрирования на чертеже:

Выберем следующий порядок обхода области:

1)

Ответ:

Автор: Емелин Александр

(Переход на главную страницу)

Качественные работы без плагиата – Zaochnik.com



Разность векторов


Узнать стоимость за 15 минут
  • Тип работы
  • Часть диплома
  • Дипломная работа
  • Курсовая работа
  • Контрольная работа
  • Реферат
  • Научно - исследовательская работа
  • Отчет по практике
  • Ответы на билеты
  • Тест/экзамен online
  • Монография
  • Эссе
  • Доклад
  • Компьютерный набор текста
  • Компьютерный чертеж
  • Рецензия
  • Перевод
  • Репетитор
  • Бизнес-план
  • Конспекты
  • Проверка качества
  • Единоразовая консультация
  • Аспирантский реферат
  • Магистерская работа
  • Научная статья
  • Научный труд
  • Техническая редакция текста
  • Чертеж от руки
  • Диаграммы, таблицы
  • Презентация к защите
  • Тезисный план
  • Речь к диплому
  • Доработка заказа клиента
  • Отзыв на диплом
  • Публикация статьи в Вак
  • Публикация статьи в Scopus
  • Дипломная работа MBA
  • Повышение оригинальности
  • Шрифт, pt
  • 12 pt
  • 14 pt
  • Другой
Прикрепить файл
Заказать