Криволинейные интегралы. Понятие и примеры решений

Жизнь такова, что из любой новой темы (не обязательно научной) пытливый человеческий ум стремится «выжать» по максимуму – все идеи и все возможности. Появилось понятие вектора, и, пожалуйста – курс аналитической геометрии не заставил себя ждать. А также дифференциальная геометрия, теории поля и прочие гранитные плиты для зубов разной крепости. Пришла наука к понятию производной – …ну, думаю, тут объяснять не нужно! …некоторые до сих пор отойти не могут =)

И интегралы тоже не стали исключением из этого правила. Давайте посмотрим на криволинейную трапецию и вспомним классическую схему интегрального исчисления:

– отрезок дробится на части;

– составляется интегральная сумма, которая равна площади ступенчатой фигуры;

– и, наконец, количество отрезков разбиения устремляется к бесконечности – в результате чего эта фигура превращается в криволинейную трапецию площади .

Более того, наводящие ужас кратные интегралы «устроены» принципиально так же – по существу, они отличается только областью интегрирования: у двойных интегралов – это не отрезок, а плоская фигура, у тройных – пространственное тело.

И, чтобы у вас сразу отлегло от сердца – наши «сегодняшние» криволинейные интегралы далеки от «ужаса», они больше похожи на «обычные» кошмары интегралы. Уже из самого названия нетрудно догадаться, что областью интегрирования таких интегралов являются кривые линии.

На уроке о пределе функции двух переменных я придумал реалистичную модель, которая снискала большую популярность – да такую, что там каждый день собираются целые экскурсии =) Итак, паркет вашей комнаты – это координатная плоскость , в углу стоит ось , а вверху «зависло» расправленное одеяло, заданное функцией .

Возьмите в руки мел и начертите на полу под одеялом произвольную кривую . Как вариант, у неё могут быть «острые углы» – такая линия называется кусочно-гладкой. Можно изобразить даже ломаную. ВажнА спрямляемость (см. урок о методах Эйлера) и непрерывность пути интегрирования. Теперь суть:

Представьте, что от одеяла осталась всего лишь одна нитка – лежащая над кривой . Вертикальная поверхность, расположенная между кривой «эль» и этой «ниткой» представляет собой фрагмент криволинейного цилиндра. Представили? Отлично!

Криволинейный интеграл первого рода

имеет вид и по модулю* равен площади данного фрагмента.

* Если график целиком или бОльшей частью расположен ниже плоскости , то площадь получится со знаком «минус».

Согласно общему принципу интегрирования, произведение бесконечно малого кусочка кривой на соответствующую высоту равно бесконечно малому элементу площади данной поверхности: . А криволинейный интеграл как раз и объединяет эти элементы вдоль всей кривой: .

! Важно: во многих источниках информации дифференциал дуги кривой обозначают через , что, на мой взгляд, не слишком удачный выбор.

Если на плоскости вместо кривой начертить отрезок прямой, то получится ни что иное, как плоская криволинейная трапеция, параллельная оси . Соответствующий интеграл хоть и каламбурно, но с полным правом можно назвать «прямолинейным».

В частности, если подынтегральная функция задаёт плоскость , то криволинейный интеграл равен площади «ленты» единичной высоты, а также и длине самой линии интегрирования: .

…чего только не придумаешь, чтобы не делать чертежей =)

Как вычислить криволинейный интеграл 1-го рода?

Пусть точки являются концами линии , а сама она задана функцией одной переменной . Тогда криволинейный интеграл первого рода можно свести к обычному определённому интегралу по следующей формуле:

Знак модуля обусловлен природой рассматриваемого интеграла: поскольку дифференциал не может быть отрицательным (это же элемент длины), то при переходе к определённому интегралу нужно соблюсти статус-кво. В случае «арабского» интегрирования справа налево (когда ) значения «икс» убывают и поэтому – в результате чего появляется побочный минус, подлежащий немедленной ликвидации. Общую формулу можно расписать подробно:

, если (стандартный случай) или:

, если .

В частности, при получается хорошо знакомая формула длины дуги кривой . Вот так-то оно бывает – оказывается, криволинейные интегралы мы уже решали! И теперь вам совсем не нужно решимости:)

Вычислить интеграл от точки до точки , если кривая задана уравнением

Решение: перед нами каноническое уравнение параболы, и коль скоро в условии дана точка , то речь идёт о её верхней ветке: .

Желающие могут выполнить чертёж. Кстати, вне зависимости от его простоты, иногда это бывает обязательным требованием условия.

В данной задаче имеет место наиболее распространённый случай , а значит, нужно использовать формулу .

Сначала удобно найти производную и упростить корень:

Так как и , то – грубо говоря, на данном шаге мы избавляемся от «игреков».

Предварительная подготовка завершена, пользуемся формулой:

Ответ:

Если вычислить тот же самый интеграл от точки до точки , то результат не изменится. В этом случае «икс» будет убывать от 1 до 0, следовательно, дифференциал станет отрицательным и при переходе к определённому интегралу потребуется добавить знак «минус»:

Таким образом, криволинейный интеграл 1-го рода не зависит от направления интегрирования:

В этой связи типовая задача, как правило, формулируется «нейтрально»: вычислить интеграл вдоль дуги параболы , расположенной между точками . Иными словами, совершенно не важно, какая из точек является началом, а какая – концом кривой.

Следует отметить, что криволинейный интеграл можно вычислить и другим способом. Поскольку буква «игрек» ничем не хуже «икса», то для вычисления криволинейного интеграла 1-го рода справедлива «зеркальная» формула (тривиальный вариант ):

, где – обратная функция, выражающая линию . В нашей задаче:

При переходе от к мы должны избавиться от всех «иксов», однако функция от них не зависит, а значит, делать ничего не нужно.

И, учитывая, что для «игрековых» координат точек справедливо неравенство , доводим решение до того же самого результата:

В чём состоит геометрический смысл разобранной задачи? На плоскости между точками и находится кусок параболы , через который проходит «одноимённый» параболический цилиндр , «высекающий» из плоскости пространственную «ниточку». Криволинейный интеграл численно равен площади фрагмента параболического цилиндра, который расположен между куском параболы и этой «ниткой».

Как я уже отмечал, криволинейный интеграл может получиться отрицательным – это означает, что фрагмент полностью или бОльшей частью лежит ниже плоскости . Не удивляйтесь и нулю (в каких случаях?). То есть, «всё как у нормальных интегралов».

Замысловатый пример для самостоятельного решения:

Вычислить площадь фрагмента цилиндрической поверхности во 2-м и 6-м октантах , который высечен плоскостью и гиперболическим параболоидом .

Ситуацию крайне важно представить геометрически – надеюсь, на данный момент все знают, как выглядит круговой цилиндр ; картинку же последней поверхности можно найти в начале урока об экстремумах функций двух и трёх переменных (3-й чертёж). Также будет полезно изобразить на плоскости кривую интегрирования.

Краткое решение с комментариями в конце урока – тот, кто правильно во всём разберётся, может считать себя «самоваром» интегралов =)

Довольно часто линия бывает задана параметрическими уравнениями , и в этом случае нужно использовать следующую формулу:

– если значение параметра возрастает . И для убывающего параметра :

В частности, при получается опять же знакомая формула длины параметрически заданной кривой:

Вычислить криволинейный интеграл по дуге окружности при изменении параметра .

Параметрические уравнения эллипса и окружности я разбирал в тематической статье о площади и объёме, и поэтому если вам не понятен их смысл (или вообще смысл параметрического задания функции), то милости прошу по ссылке.

Решение: указанным пределам изменения параметра соответствует левая верхняя дуга единичной окружности:

По условию, значение параметра возрастает, поэтому:

Нет, конечно, можно интегрировать и от до с добавочным минусом, но зачем?

Как и в предыдущих примерах, сначала удобно найти производные и причесать корень:

…мда, тут вообще стрижка наголо получилась =)

Ответ:

Два последних примера похожи, как близкие родственники, однако между ними есть существенное различие: в Примере 2 требовалось найти площадь, и поэтому было принципиально важно проанализировать положение поверхности относительно плоскости . В третьем же примере нужно было вычислить интеграл формально. Как видите, различие здесь точно такое же, как и между вычислением площади с помощью определённого интеграла и «просто» вычислением определённого интеграла.

И, разумеется, криволинейные интегралы обладают всеми типичными свойствами «клана интегралов», в частности, для них справедливо свойство линейности:

а также свойство аддитивности: если на линии выбрать промежуточную точку , то интеграл можно разделить на две части:

Или вот такой – более практически важный пример, …сейчас что-нибудь придумаю, чтобы легко было нарисовать в уме,… предположим, нам нужно вычислить криволинейный интеграл по ломаной :

, где .

Да без проблем – представим его в виде суммы двух интегралов по отрезкам :

– и вперёд с песнями.

И на всякий пожарный формула для кривой, заданной уравнением в полярных координатах:

Кроме того, у криволинейного интеграла 1-го рода существуют физические приложения, в частности, с помощью него можно вычислить массу плоской дуги , если – функция её плотности.

Впрочем, криволинейные интегралы 1-го рода – это вообще нечастый гость в самостоятельных и контрольных работах (по крайне мере, у студентов-заочников), однако если вам этих примеров не достаточно, то загляните, например, во 2-й том К.А. Бохана. Там, к слову, вполне доступно разобрана и теория.

Мой же урок ориентирован на реальную практику, и по этой причине значительная его часть будет посвящена

криволинейным интегралам второго рода

«Реалити-шоу» точно такое же. Отличие будет в способе интегрирования. Если в интеграле мы объединяли бесконечно малые кусочки самой кривой, то сейчас интегрирование пойдёт по проекциям этих кусочков на ось абсцисс:

,

или, как вариант – по их проекциям на ось ординат:

,

и если не параллельна координатным осям, то:

.

В большинстве задач приходится иметь дело с так называемой общей формой криволинейного интеграла от двух функций:

С практической точки зрения будут важнЫ те же свойства линейности и аддитивности, а также тот факт, что:

криволинейный интеграл 2-го рода зависит от направления интегрирования, причём:

И в самом деле – здесь же интегрирование осуществляется не по длинам (которые беспрекословно положительны), а по их безразмерным проекциям, которые могут быть и отрицательными.

С чисто формальной точки зрения криволинейный интеграл 2-го рода «опознаётся» по наличию в подынтегральном выражении дифференциалов (намного реже – какого-то одного), и алгоритм его решения гораздо бесхитростнее, нежели «разборки» со «старшим братом»:

Вычислить криволинейный интеграл , где – отрезок прямой от точки до точки . Выполнить чертёж.

Решение: на первом шаге нам нужно найти уравнение прямой, которая содержит отрезок . Составим его по двум точкам:

Несмотря на то, что линия интегрирования весьма простА, по условию требуется выполнить чертёж:

Обязательно указываем направление интегрирования! – здесь оно имеет принципиальное значение. Также обратите внимание на область определения подынтегральных функций – в данном примере , и поэтому линия интегрирования не должна пересекать координатные оси! Иногда авторы задачников и методичек недоглядывают за этим моментом, в результате чего получается невразумительное решение, где ответ, например, может оказаться бесконечным. Нет, конечно, мы вправе рассмотреть и несобственный криволинейный интеграл, но обычно задумка совсем не такая.

Криволинейный интеграл 2-го рода тоже сводится к определённому интегралу с «избавлением» либо от всех «игреков», либо от всех «иксов».

Способ первый, традиционный, где осуществляется переход к интегрированию по переменной . Пределы интегрирования, как нетрудно догадаться, соответствуют «иксовым» координатам точек , при этом не имеет значения, какой из них больше, а какой меньше; НО, принципиально важен порядок – интегрировать нужно строго по заданному направлению: от 1 до 3.

Берём уравнение линии и находим дифференциал:

Подставим и в подынтегральное выражение – всё настолько прозрачно, что я даже формулу записывать не буду:

Ответ:

Если проинтегрировать наоборот – от точки до точки , то получится то же самое, только с другим знаком: – в силу известного свойства определённого интеграла.

Способ второй состоит в переходе к интегрированию по переменной . Для этого из уравнения выразим обратную функцию:

и найдём дифференциал .

Перейдём к определённому интегралу от 1 до 2 («игрековые» координаты точек и ), подставив при этом в подынтегральное выражение и :

Второй способ оказался технически труднее, но, разумеется, бывает и наоборот. Поэтому перед решением всегда полезно «прикинуть» оба пути. И да – проверка же, не ленИтесь!

Но тут есть исключение: если фрагмент или весь путь интегрирования параллелен координатной оси, то способ остаётся только один! Ибо проекция этого участка на другую ось равна нулю.

Ответ:

Для самостоятельного решения я всегда стараюсь подбирать наиболее интересные задачи, которые мои студенты всегда выполняют с большим энтузиазмом иначе ни хрена не сдадут:);-)

Вычислить криволинейный интеграл от точки до точки вдоль ломаной, состоящей из отрезков прямых . Выполнить чертёж.

Краткое решение и ответ в конце урока.

У многих читателей наверняка назрел вопрос: в чём смысл такого интегрирования? У криволинейных интегралов 2-го рода есть каноничный физический смысл (и не только), с которым мы непременно познакомимся на следующем уроке (Интегрирование по замкнутому контуру и формула Грина). Всё будет – и примеры, и пояснения, и ссылки. А пока нарабатываем технические навыки.

Вычислить криволинейный интеграл , где – дуга кривой от точки до точки .

Решение: для удобства выполним чертёж, не забывая подметить, что линия интегрирования не может пересекать ось ординат (т.к. ), впрочем, она здесь заведомо не может – ибо логарифм:

И сейчас я вас познакомлю с ещё одним приёмом решения. По причине той же аддитивности, интеграл можно разделить на две части:

– и с каждым из них разделаться по отдельности:

1) Вычислим . Так как , то , изменяется от 1 до :

Надеюсь, на данный момент все читатели понимают, как решать интеграл подведением функции под знак дифференциала. Результат, кстати, не помешает проверить интегрированием по «игрек»:

изменяется от 0 до 1 (см. чертёж):

, что и требовалось проверить. Напоминаю, что второй путь можно смело выбирать и за основной.

Со второй частью всё проще:

2)

Контроль по «игрек»:

Осталось просуммировать полученные значения:

Ответ:

Разделение интеграла особенно удобно в тех случаях, когда подынтегральное выражение сильно «наворочено». Очередная «бомба» для самостоятельного решения:

Проверить, существует ли интеграл по данной кривой, и вычислить его, если это возможно

– по дуге параболы от точки до начала координат.

И в заключение урока пара ласковых о параметрически заданной кривой:

Вычислить криволинейный интеграл по кривой

Решение: чертежа здесь, благо, чертить не требуется, да он и не нужен – условие таково, что снимай данные, да решай.

Как решать? Объясню буквально в 7 словах:)

– в подынтегральном выражении нужно всё выразить через параметр.

При этом во многих случаях, и в этом в частности, «начинку» удобно обработать отдельно. Сначала разбираемся с дифференциалами:

Теперь без спешки и ВНИМАТЕЛЬНО подставляем их вместе с прародителями в подынтегральное выражение, после чего аккуратно проводим упрощения:

И что приятно, тут не нужно думать над пределами изменения параметра:

Ответ:

Вычислить криволинейный интеграл по верхней половине эллипса . Интегрировать против часовой стрелки.

Во второй части урока мы рассмотрим интереснейший случай интегрирования по замкнутому контуру, а также физический смысл криволинейного интеграла 2-го рода.

Жду вас не нетерпением!

Решения и ответы:

Пример 2: Решение: проекцией цилиндра на плоскость является «одноимённая» окружность единичного радиуса:

По условию, , следовательно: , то есть в рассматриваемой области поверхность расположена ниже плоскости . Площадь искомого фрагмента цилиндрической поверхности вычислим с помощью криволинейного интеграла 1-го рода по дуге , при этом к интегралу следует добавить знак «минус» (по причине указанного выше обстоятельства):

Интегрирование проведём по переменной от точки до точки . Так как , то используем формулу .

Примечание: можно интегрировать в обратном направлении (от 0 до –1), но тогда к интегралу следует добавить дополнительный минус.

Верхняя полуокружность задаётся функцией . Найдём производную и упростим корень:

Ответ:

Интеграл по ломаной вычислим как сумму интегралов по её звеньям:

1) На отрезке : изменяется от 1 до 3:

Примечание: т.к. параллелен оси ординат, то 2-й способ применить нельзя!

2) На отрезке : изменяется от 3 до 4:

Ответ:

Пример 7: Решение: линия интегрирования спрямляема, непрерывна и не пересекает прямые , значит, данный криволинейный интеграл существует. Выполним чертёж:

Представим интеграл в виде:

1) Вычислим .

, изменяется от 1 до 0:

2) Вычислим .

, изменяется от –1 до 0:

Ответ: интеграл по данной кривой существует и равен

Пример 9: Решение: запишем параметрические уравнения эллипса:

Выполним подстановку и упростим подынтегральное выражение:

Предложенной дуге и направлению интегрирования соответствует изменение параметра от 0 до :

Ответ:

Автор: Емелин Александр

(Переход на главную страницу)

Качественные работы без плагиата – Zaochnik.com



Понятие о гиперболических функциях


Узнать стоимость за 15 минут
  • Тип работы
  • Часть диплома
  • Дипломная работа
  • Курсовая работа
  • Контрольная работа
  • Реферат
  • Научно - исследовательская работа
  • Отчет по практике
  • Ответы на билеты
  • Тест/экзамен online
  • Монография
  • Эссе
  • Доклад
  • Компьютерный набор текста
  • Компьютерный чертеж
  • Рецензия
  • Перевод
  • Репетитор
  • Бизнес-план
  • Конспекты
  • Проверка качества
  • Единоразовая консультация
  • Аспирантский реферат
  • Магистерская работа
  • Научная статья
  • Научный труд
  • Техническая редакция текста
  • Чертеж от руки
  • Диаграммы, таблицы
  • Презентация к защите
  • Тезисный план
  • Речь к диплому
  • Доработка заказа клиента
  • Отзыв на диплом
  • Публикация статьи в Вак
  • Публикация статьи в Scopus
  • Дипломная работа MBA
  • Повышение оригинальности
  • Шрифт, pt
  • 12 pt
  • 14 pt
  • Другой
Прикрепить файл
Заказать