Линии второго порядка

Определение. Линия, имеющая в системе координат хоу уравнение вида

где А 2 +В 2 +С 0,называется линией второго порядка.

К основным линиям второго порядка относятся: эллипс, окружность, гипербола, парабола. К не основным линиям второго порядка относятся: пара параллельных или слившихся прямых, пара пересекающихся прямых и точка.

Определение. Эллипсом называется множество точек плоскости, сумма расстояний от каждой из которых до двух фиксированных точек (фокусов) этой плоскости - постоянная величина, причем, большая чем расстояние между фокусами.

Если фокусы F1, F2 находятся на оси ох, а начало координат делит фокусное расстояние F1F2 пополам, то эллипс имеет уравнение

,

которое получается путем упрощения равенства , если учесть, что расстояние (c), малая полуось (b) и большая полуось (a) эллипса связаны соотношением: a 2 = b 2 + c 2 .

Определение. Окружностью называется множество всех точек плоскости, каждая из которых находится на расстоянии R от фиксированной точки С этой плоскости.

Окружность можно рассматривать как предельный случай эллипса, у которого фокусы совместились в одной точке.

Определение. Гиперболой называется множество всех точек плоскости, абсолютная величина разности расстояний от каждой из которых до двух фиксированных точек (фокусов) этой плоскости - постоянная величина, причем меньшая чем расстояние между фокусами.

Если фокусы F1, F2 находятся на оси ох и начало координат делит фокусное расстояние F1F2 пополам, то гипербола имеет уравнение , которое получается

путе м упрощения равенства - const,

если учесть, что полуфокусное расстояние (с), вещественная полуось (а), мнимая полуось (в) связаны соотношением c 2 = a 2 + b 2.

Определение. Параболой называется множество всех точек плоскости, каждая из которых одинаково удалена от некоторой фиксированной точки (фокуса) и от некоторой фиксированной прямой (директрисы) этой плоскости.

Если фокус F находится на оси ох, перпендикулярной директрисе, то парабола имеет уравнение у 2 =2рх,

где р - расстояние между фокусом и директрисой.

Примечание.Если в уравнении второй степени имеется произведение координат (коэффициент В 0), то линия второго порядка повернута на некоторый угол относительно осей координат. Например, уравнение ху=1 определяет гиперболу с параметрами а = b= , повернутую относительно осей координат на 45°. Если коэффициент В в уравнении второй степени равен 0, то вопрос о виде и расположении линии легко решается выделением полных квадратов по переменным х и y.

Пример.Построить линию, заданную уравнением х 2 + 4у 2 - 4х - 8у + 4 = 0 и найти ее параметры.



Линейные уравнения