«Если Вы хотите научиться плавать, то смело входите в воду, а если хотите научиться решать задачи, то решайте их

(Математик. Внёс большой вклад в популяризацию математики. Написал несколько книг о том, как решают задачи и как надо учить решать задачи.)

Алгоритм метода Жордана-Гаусса решения систем линейных уравнений

1) Выписать расширенную матрицу системы. (Что такое расширенная матрица читать здесь)

2) Выбрать ведущий элемент (любой ненулевой элемент) в любой строке и в любом столбце, кроме последнего. ( Строка и столбец, в которых он находится называют ведущими ).

3) Выполнить жорданово исключение с выбранным ведущим элементом. Отметить ведущую строку и все строки, помеченные ранее.

4) Если хотя бы одна строка имеет вид: (0 0 … 0 : b ), b ≠ 0, то система решений не имеет. Ответ. Система несовместна.

5) Если все ненулевые строки матрицы помечены, то выписать систему и найти ее общее решение. Ответ. Общее решение системы.

6) Выбрать ведущий элемент в любой непомеченной строке и в любом столбце, кроме последнего. Перейти к пункту 3.

Выполнить жорданово исключение с ведущим элементом аij означает выполнить следующие действия:

1) разделить ведущую строку на ведущий элемент;

2) заполнить свободные места в ведущем столбце нулями;

3) остальные элементы матрицы пересчитать по формуле, называемой «правилом прямоугольника».

Изобразим это правило схематически. Ведущий элемент будем выделять рамкой. Стрелками показаны элементы, которые перемножаются в числителе дроби. Эти элементы расположены на диагоналях прямоугольника, образованного ведущим элементом аij, пересчитываемым элементом аkl и элементами, которые находятся на пересечении ведущей строки и столбца l, ведущего столбца и строки k.

1. В числители дроби всегда от произведения с ведущим элементом (вне зависимости от того в какой вершине прямоугольника стоит ведущий элемент) вычитается произведение элементов, которые находятся на пересечении ведущей строки и столбца l, ведущего столбца и строки k.

2. Если в ведущей строке есть нулевой элемент, то столбец, в котором он находится, при жордановом исключении не меняется.

3. Если в ведущем столбце есть нулевой элемент, то строка, в которой он находится, при жордановом исключении не меняется.

Рассмотрим примеры решения систем методом Жордана-Гаусса.

Выпишем расширенную матрицу системы

Выбираем ведущий элемент (ведущий элемент будем выделять рамкой):

Выполним жорданово исключение с ведущим элементом а13=1:

1) разделим ведущую строку на 1;

2) заполним свободные места в третьем столбце нулями;

3) в ведущем столбце во второй строке есть нулевой элемент (а23=0), поэтому вторую строку перепишем без изменений (замечание 3);

4) остальные элементы матрицы (а именно четыре оставшихся элемента третьей строки) пересчитаем по «правилу прямоугольника».

В получившейся матрице пометим галочкой первую строку:

Теперь в этой матрице выберем ведущий (любой ненулевой) элемент в любой непомеченной строке и в любом столбце, кроме последнего, например, а21=1.

Выполним жорданово исключение с ведущим элементом а21=1:

1) разделим ведущую строку на 1;

2) заполним свободные места в первом столбце нулями;

3) в ведущей строке в третьем столбце есть нулевой элемент (а23=0), поэтому третий столбец перепишем без изменений (замечание 2);

4) остальные элементы матрицы пересчитаем по «правилу прямоугольника».

Пометим галочками ведущую (вторую) строку и строку, помеченную ранее.

В результате получится матрица:

В последней матрице все элементы третьей строки, кроме элемента расположенного в последнем столбце, равны нулю. Следовательно, данная система несовместна (п. 4 в алгоритме метода Жордана-Гаусса решения систем линейных уравнений).

Согласно алгоритму метода Жордана-Гаусса составляем расширенную матрицу системы

Выбираем ведущий элемент и выполняем над матрицей последовательность жордановых исключений.

В последней матрице все строки помечены. Значит, выполнение жордановых исключений закончено, и эта матрица является расширенной матрицей системы, равносильной исходной системе уравнений. Это решение непосредственно определяется записью системы уравнений, соответствующей последней матрице:

Система имеет единственное решение.

ОТВЕТ:

Согласно алгоритму метода Жордана-Гаусса составляем расширенную матрицу системы

Выбираем ведущий элемент и выполняем над матрицей последовательность жордановых исключений.

В последней матрице все строки помечены. Значит, выполнение жордановых исключений закончено, и эта матрица является расширенной матрицей системы, равносильной исходной системе уравнений. Это решение непосредственно определяется записью системы уравнений, соответствующей последней матрице:

В первом уравнении коэффициент при х4 равен единице, поэтому в этом уравнении выразим х4.

Во втором уравнении коэффициент при х1 равен единице, поэтому выразим х1.

В третьем уравнении коэффициент при х2 равен единице, поэтому выразим х2.

Получаем:

Система имеет бесконечное множество решений.

Пусть

ОТВЕТ:

Автор: Фадеева Анна

Комментарии к этой заметке:

хороший сайт, но для знающих

Но щас матика далека от многих, а все курсы похожи на экскурсии по музею. Хорошо было бы, если бы курсы давали не "стройную систему", а конкретное руководство.

Добавить Ваш комментарий

Подпишитесь на рассылку и получайте ссылки на свежие уроки, статьи и новости

Хотите внести свою лепту в его развитие!? Тогда Вам сюда!

Обучающие программы для начальной школы

© 2013-2017 www.math-around.ru. Все права защищены.

Все материалы сайта могут быть использованы только с согласия владельцев сайта и только c указанием активной ссылки на статью-источник.



Выражение смешанного произведения через координаты


Узнать стоимость за 15 минут
  • Тип работы
  • Часть диплома
  • Дипломная работа
  • Курсовая работа
  • Контрольная работа
  • Реферат
  • Научно - исследовательская работа
  • Отчет по практике
  • Ответы на билеты
  • Тест/экзамен online
  • Монография
  • Эссе
  • Доклад
  • Компьютерный набор текста
  • Компьютерный чертеж
  • Рецензия
  • Перевод
  • Репетитор
  • Бизнес-план
  • Конспекты
  • Проверка качества
  • Единоразовая консультация
  • Аспирантский реферат
  • Магистерская работа
  • Научная статья
  • Научный труд
  • Техническая редакция текста
  • Чертеж от руки
  • Диаграммы, таблицы
  • Презентация к защите
  • Тезисный план
  • Речь к диплому
  • Доработка заказа клиента
  • Отзыв на диплом
  • Публикация статьи в Вак
  • Публикация статьи в Scopus
  • Дипломная работа MBA
  • Повышение оригинальности
  • Шрифт, pt
  • 12 pt
  • 14 pt
  • Другой
Прикрепить файл
Заказать