Исследование степенного ряда на сходимость

После небольшой порции теоретического материала переходим к рассмотрению типового задания, которое практически всегда встречается на зачетах и экзаменах по высшей математике.

Найти область сходимости степенного ряда

Задание часто формулируют эквивалентно: Найти интервал сходимости степенного ряда и исследовать его сходимость на концах найденного интервала.

Алгоритм решения довольно прозрачен и трафаретен.

На первом этапе находим интервал сходимости ряда. Почти всегда необходимо использовать признак Даламбера и находить предел . Технология применения признака Даламбера точно такая же, как и для числовых рядов, с ней можно ознакомиться на уроке Признак Даламбера. Признаки Коши. Единственное отличие – все дела у нас происходят под знаком модуля.

Итак, решаем наш предел:

(1) Составляем отношение следующего члена ряда к предыдущему.

(2) Избавляемся от четырехэтажности дроби.

(3) В числителе по правилу действий со степенями «отщипываем» один «икс». В знаменателе возводим двучлен в квадрат.

(4) Выносим оставшийся «икс» за знак предела, причем, выносим его вместе со знаком модуля. Почему со знаком модуля? Дело в том, что наш предел и так будет неотрицательным, а вот «икс» вполне может принимать отрицательные значения. Поэтому модуль относится именно к нему.

Кстати, почему можно вообще вынести за знак предела? Потому-что «динамической» переменной в пределе у нас является «эн», и от этого нашему «иксу» ни жарко ни холодно.

(5) Устраняем неопределенность стандартным способом.

После того, как предел найден, нужно проанализировать, что у нас получилось.

Если в пределе получается ноль, то алгоритм решения заканчивает свою работу, и мы даём окончательный ответ задания: «Область сходимости степенного ряда: » (любое действительное число – случай №2 предыдущего параграфа). То есть, степенной ряд сходится при любом значении «икс». Ответ можно записать эквивалентно: «Ряд сходится при » (значок в математике обозначает принадлежность).

Если в пределе получается бесконечность, то алгоритм решения также заканчивает свою работу, и мы даём окончательный ответ задания: «Ряд сходится при » (или при либо »). Смотрите случай №3 предыдущего параграфа.

Если в пределе получается не ноль и не бесконечность, то у нас самый распространенный на практике случае №1 – ряд сходится на некотором интервале.

В данном случае предел равен . Как найти интервал сходимости ряда? Составляем неравенство:

В ЛЮБОМ задании данного типа в левой части неравенства должен находитьсярезультат вычисления предела, а в правой части неравенства – строго единица. Не буду объяснять, почему именно такое неравенство и почему справа единица. Уроки носят практическую направленность, и уже очень хорошо, что от моих рассказов не повесился профессорско-преподавательский состав стали понятнее некоторые теоремы.

Техника работы с модулем и решения двойных неравенств подробно рассматривалась на первом курсе в статье Область определения функции, но для удобства я постараюсь максимально подробно закомментировать все действия. Раскрываем неравенство с модулем по школьному правилу . В данном случае:

– интервал сходимости исследуемого степенного ряда.

Половина пути позади.

На втором этапе необходимо исследовать сходимость ряда на концах найденного интервала.

Сначала берём левый конец интервала и подставляем его в наш степенной ряд :

При

Получен числовой ряд, и нам нужно исследовать его на сходимость (уже знакомая из предыдущих уроков задача).

Используем признак Лейбница: 1) Ряд является знакочередующимся. 2) – члены ряда убывают по модулю. Каждый следующий член ряда по модулю меньше, чем предыдущий, значит, убывание монотонно.

Вывод: ряд сходится.

Исследуем ряд на абсолютную сходимость: – сходится (случай обобщенного гармонического ряда).

Таким образом, полученный числовой ряд сходится абсолютно.

Далее рассматриваем правый конец интервала , подставляем это значение в наш степенной ряд :

При – сходится.

Таким образом, степенной ряд сходится на обоих концах найденного интервала.

Ответ: Область сходимости исследуемого степенного ряда:

Имеет право на жизнь и другое оформление ответа: Ряд сходится, если

Иногда в условии задачи требуют указать радиус сходимости. Очевидно, что в рассмотренном примере .

49)Степенные ряды.Интервал и радиус сходимости.

Ряд, членами которого являются степенные функции аргумента x, называется степенным рядом:

Часто рассматривается также ряд, расположенный по степеням (x − x0), то есть ряд вида

где x0 − действительное число.

Интервал и радиус сходимости

Рассмотрим функцию . Ее областью определения является множество тех значенийx, при которых ряд сходится. Область определения такой функции называется интервалом сходимости. Если интервал сходимости представляется в виде , гдеR > 0, то величина R называетсярадиусом сходимости. Сходимость ряда в конечных точках интервала проверяется отдельно. Радиус сходимости можно вычислить, воспользовавшись радикальным признаком Коши, по формуле

или на основе признака Даламбера:

Найти радиус и интервал сходимости степенного ряда .

Сделаем замену: u = x + 3. Тогда ряд принимает вид . Вычислим радиус сходимости:

Соответственно, интервал сходимости равен (− ∞; ∞).

Интервал сходимости степенного ряда

Так называется интервал, в каждой точке которого степенной ряд с действительными членами сходится, причем абсолютно. На каждом из концов этого интервала ряд может как сходиться (абсолютно или условно), так и расходиться. Вне этого интервала ряд расходится. Заметим, что интервал сходимости существует для каждого сходящегося хоть на каком-нибудь интервале степенного ряда. Для ряда, сходящегося только в одной точке, интервал получается вырожденным. Для расходящегося ряда интервал равен пустому множеству.

Для степенного ряда радиусR (половина длины) интервала сходимости можно вычислить по формуле Коши-Адамара: причем считают, что если этот верхний предел равен нулю, то ряд сходится на всей числовой оси (радиус сходимости бесконечен), а если предел равен бесконечности, то радиус сходимости равен нулю.

Верхний предел числовой последовательности <an> – наибольший из пределов частичных подпоследовательностей, которые можно составить из членов данной последовательности. Он обозначается как

Радиус сходимости степенного ряда. Так называют радиус круга сходимостистепенного ряда на комплексной плоскости (или степенного ряда на действительной числовой оси), т.е. такое число r, что ряд сходится при |z| < r (соответственно при |x| < r) и расходится при |z| > r (соответственно при |x| > r). На границе круга сходимости ряд может как сходиться, так и расходиться.

Для вычисления радиуса сходимости степенного ряда имеются несколько формул, например:

(Формула Даламбера);

(Формула Коши).

Для продолжения скачивания необходимо собрать картинку:



Решение систем линейных уравнений методом Гаусса


Узнать стоимость за 15 минут
  • Тип работы
  • Часть диплома
  • Дипломная работа
  • Курсовая работа
  • Контрольная работа
  • Реферат
  • Научно - исследовательская работа
  • Отчет по практике
  • Ответы на билеты
  • Тест/экзамен online
  • Монография
  • Эссе
  • Доклад
  • Компьютерный набор текста
  • Компьютерный чертеж
  • Рецензия
  • Перевод
  • Репетитор
  • Бизнес-план
  • Конспекты
  • Проверка качества
  • Единоразовая консультация
  • Аспирантский реферат
  • Магистерская работа
  • Научная статья
  • Научный труд
  • Техническая редакция текста
  • Чертеж от руки
  • Диаграммы, таблицы
  • Презентация к защите
  • Тезисный план
  • Речь к диплому
  • Доработка заказа клиента
  • Отзыв на диплом
  • Публикация статьи в Вак
  • Публикация статьи в Scopus
  • Дипломная работа MBA
  • Повышение оригинальности
  • Шрифт, pt
  • 12 pt
  • 14 pt
  • Другой
Прикрепить файл
Заказать