Как вычислить математическое ожидание и дисперсию

непрерывной случайной величины?

Ответ на этот вопрос состоит всего лишь из 2 слов: с помощью интегралов. Приветствую тех, кто подтянулся с поисковика – вы попали на 2-ю часть урока о непрерывной случайной величине (НСВ), и если что-то будет не понятно, милости прошу по ссылкам.

Сам смысл математического ожидания и дисперсии мы уже разбирали ранее (но, конечно, повторим), и сейчас настало время узнать, как они определяются для НСВ. Всё очень просто: по аналогии с ДСВ. Математическое ожидание непрерывной случайной величины определяется, как несобственный интеграл:

, где – функция плотности распределения этой случайной величины.

Примечание: несложный вывод этой формулы можно найти, например, в учебном пособии В.Е. Гмурмана

Дисперсия тоже имеет «знакомые очертания»: (по определению), но в практических задачах гораздо удобнее применять формулу:

Итак, все инструменты в руках и мы с энтузиазмом приступаем к работе учёбе любимому делу:

…нет, это не опечатка – пример уже 7-й!

Непрерывная случайная величина задана функцией распределения вероятностей:

Вычислить . И построим ещё графики и , ну а куда же без них?

Решение начнём с графика функции распределения. При его ручном построении удобно найти промежуточное значение и аккуратно провести кусок кубической параболы :

Повторяем: функция распределения описывает вероятность того, что случайная величина примет значение, МЕНЬШЕЕ, чем переменная , «пробегающая» все значения от до . Данная функция изменяется в пределах и не убывает (т. к. «накапливает» вероятности), а также является непрерывной (для НСВ).

Очевидно, что случайная величина принимает случайные значения из отрезка , и какие из них более вероятны, а какие – менее, наглядно показывает функция ПЛОТНОСТИ распределения вероятностей:

И снова опорные точки: с немедленным чертёжом:

В отличие от функции плотности может быть разрывна и может принимать значения бОльшие единицы (как в нашем случае); может, как убывать, так и возрастать и даже иметь экстремумы (наш кусок параболы растёт). Однако, она неотрицательна: и обладает свойством , которое лучше всегда проверять (а то мало ли, опечатка или ошибка). В силу аддитивности интеграла:

– данный результат равен заштрихованной площади и с вероятностной точки зрения означает тот факт, что случайная величина достоверно примет одно из значений отрезка . Причём, по чертежу хорошо видно, что значения из правой части отрезка гораздо более вероятны, чем значения слева.

И эти вероятности оцениваются кусками площади, а не значениями функции . (окончательно избавляемся от распространённой иллюзии)

Ради интереса вычислим:

– вероятность того, что случайная величина примет значения из промежутка

Очевидно, что математическое ожидание (среднеожидаемое значение) случайной величины обязательно находится в «живом» отрезке и смещено ближе к его правому концу. Убедимся в этом аналитически. По формуле вычисления математического ожидания, и в силу того же свойства аддитивности:

– ну что же, вполне и вполне правдоподобно, результат я отметил красной точкой на чертеже.

! Примечание: в общем случае (и в этом, в частности) не делит площадь на 2 равные части!

Если промежуток конечен, то можно сразу записывать, что матожидание равно определённому интегралу:

Дисперсию (меру рассеяния случайных значений относительно ) вычислим по формуле:

Сначала удобно разобраться с интегралом, здесь я не буду расписывать подробно:

И, наконец, среднее квадратическое отклонение:

Самостоятельно по чертежу оцените, что на интервале сконцентрирована значительная часть площади – образно говоря, тут находится «гуща событий».

Вот такое вот у нас получилось захватывающее повторение-изучение-исследование!

И, коль скоро, спрашивалось немного, запишем:

Ответ:

Строго говоря, ответ следовало записывать и в предыдущих задачах, но когда пунктов много, то итоговые результаты вполне допустимо помечать по ходу решения, например, подчёркивать или обводить карандашом. Однако на моей памяти встречались и строгие рецензенты, которые требовали всё оформлять «по высшему разряду».

Следующее задание для самостоятельного решения:

Представить в аналитическом виде и показать, что она может служить плотностью вероятностей непрерывной случайной величины . Вычислить и .

Да, бывает и так! – вспоминаем уравнение прямой на плоскости. Краткое решение и ответ в конце урока.

Зачастую вычисление математического ожидания и дисперсии сопряжено с техническими трудностями, и заключительные примеры урока будут посвящены их преодолению:

Непрерывная случайная величина задана функцией плотности распределения .

Найти: …, прямо так и хочется добавить ещё, но в жуткой борьбе с самим собой я остановился, чтобы сосредоточиться на главном =)

Решение: найдём коэффициент . Согласно свойству :

и функция плотности распределения:

Проверочка: , ч.т.п., и не забываем проконтролировать, что .

Вычислим математическое ожидание:

, как интеграл от нечётной функции по симметричному промежутку.

Интересно отметить, что математическое ожидание «разделило» вероятности (единичную площадь под функцией плотности) на 2 равные части:

Но, как я примечал выше, в общем случае это не так. Здесь это получилось по причине чётности и «симметричных» вероятностей. Также обратите внимание на то, что наша функция достигает минимума в точке и около этого значения сконцентрированы наименее вероятные значения случайной величины. Впрочем, распределение вероятностей близкО к равномерному.

Поскольку математическое ожидание равно нулю, то дисперсию удобно вычислить «одной строкой». Используем формулу и чётность подынтегральной функции:

Найдём новые пределы интегрирования. Если , то и:

…мда, хороший вышел каламбур на счёт одной строки :), продолжаем:

Результат получился положительным, и это уже хороший знак. Тем не менее, не помешает выполнить косвенную проверку и вычислить среднее квадратическое отклонение:

– ну что же, вполне и вполне реалистично, ещё раз взгляните на чертёж и мысленно отмерьте от влево/вправо 0,6.

А вот если бы отклонение вышло равным 1, 2 или бОльшему числу, то это говорило бы о явной ошибке.

Ответ:

Существует более трудная вариация рассмотренной функции

Всё хорошо в меру:

Непрерывная случайная величина задана своей функцией распределения:

Вычислить математическое, дисперсию и стандартное отклонение.

В целях самоконтроля полезно построить график плотности и отложить на чертеже математическое ожидание, затем найти дисперсию и оценить «правдоподобность» стандартного отклонения.

Непрерывная случайная величина задана плотностью распределения вероятностей:

Найти и . Составить функцию распределения и построить графики . Вычислить вероятность того, что случайная величина примет значение, бОльшее, чем её математическое ожидание.

Нахождение функции распределения как-то так затерялось в последних задачах, и поэтому самое время освежить в памяти формулу . И, кстати, перед вами пример непрерывной случайной величины с бесконечной дисперсией. Да, так бывает! Но удивляться тут не нужно – потому что бывают и более интересные случаи. …Я знал, что вы соскучились =)

Решения и ответы совсем близко. Для желающих предлагаю более трудное задание с функцией , где нужно расписать модуль (свериться можно здесь же).

И предчувствие вас не обмануло! Точно так же, как и в дискретном случае, у непрерывной случайной величины есть особые виды распределений, самые популярные из которых рассмотрены в следующих статьях:

+ тематический pdf-решебник с десятками готовых задач, но это уже когда нагуляете аппетит :)

Решения и ответы:

Пример 8. Решение: представим в аналитическом виде. Составим уравнение прямой по точкам и :

Примечание: верхние неравенства можно записать и так: , в условии нет однозначной инструкции на этот счёт.

Покажем, что может служить плотностью вероятностей НСВ :

1) функция на всей числовой прямой;

2)

Таким образом, может служить плотностью вероятностей непрерывной случай­ной величины

Вычислим математическое ожидание:

Дисперсию вычислим по формуле:

Среднее квадратическое отклонение:

Найдем функцию плотности распределения :

Вычислим математическое ожидание:

Интегрируем по частям:

Построим график плотности распределения и отметим на оси математическое ожидание, значение которого получилось весьма правдоподобным:

Дисперсию вычислим по формуле:

Сначала найдём неопределённый интеграл:

– исходная функция, ч.т.п.

Вычислим определённый интеграл:

Вычислим среднее квадратическое отклонение:

По чертежу хорошо видно, что на интервале сконцентрирована значительная плотность вероятности, что служит косвенным подтверждением правильности вычислений.

Ответ:

Пример 11. Решение: найдём коэффициент . Используем свойство .

Вычислим несобственный интеграл:

и функция плотности распределения:

Вычислим математическое ожидание:

Дисперсию вычислим по формуле:

, откуда следует, что .

Функцию распределения вероятностей найдём по формуле :

1) на интервале и ;

2) на промежутке , следовательно:

Вычислим

– вероятность того, что случайная величина примет значение, бОльшее, чем её математическое ожидание.

Примечание: так как случайная величина теоретически может принимать сколь угодно большие значения, то такое смещение вполне закономерно.

Автор: Емелин Александр

(Переход на главную страницу)

Качественные работы без плагиата – Zaochnik.com



Вогнутость и выпуклость графика функции Точки перегиба