6.4. Некоторые приложения скалярного произведения

Угол между векторами

Отсюда следует условие перпендикулярности ненулевых векторов а и b:

Проекция вектора на заданное направление

Нахождение проекции вектора а на направление, заданное вектором b, может осуществляться по формуле

Работа постоянной силы

Пусть материальная точка перемещается прямолинейно из положения А в положение В под действием постоянной силы F, образующей угол  с перемещением АВ= S (см.рис. 15).

Из физики известно, что работа силы F при перемещении S равна

Таким образом, работа постоянной силы при прямолинейном перемещении ее точки приложения равна скалярному произведению вектора силы на вектор перемещения.

Вычислить работу, произведенную силой F=(3;2;4), если точка ее приложения перемещается прямолинейно из положенияA(2;4;6) в положение В(4;2;7). Под каким углом к АВ направлена сила F?

11. Выражение скалярного произведения вектора через координаты сомножителей. Теорема.

Пусть в пространстве выбран ортонормированный базис i, j, k. Наложим на этот базис еще одно дополнительное условие, а именно: из конца вектора k поворот от i к j по кратчайшему направлению должен быть виден против часовой стрелки.

Определение 10.27 Упорядоченную тройку некомпланарных векторов будем называть правой тройкой векторов, если из конца третьего вектораповорот от первого векторако второму векторупо кратчайшему направлению виден против часовой стрелки. Если поворот виден по часовой стрелке, то тройку называют левой тройкой векторов.

Оказывается, если векторы правой тройки изменять непрерывно, но так, чтобы в любой момент времени они были не компланарны, то в любой момент такой деформации эта тройка векторов будет правой тройкой. Аналогичным свойством обладает и левая тройка векторов.

Отметим также, что определение векторного произведения и правой (левой) тройки вектров связаны с наличием в пространстве "физических" объектов: часов, человека и т. п. В абстрактном векторном пространстве, где такие объекты отсутствуют, определить, какая тройка -- правая, а какая -- левая, невозможно. Можно только все некомпланарные тройки векторов разбить на два класса такие, что при непрерывной деформации тройки одного класса, при которой в любой момент векторы тройки не компланарны, тройка все время остается в своем классе.

Итак, пусть в трехмерном пространстве задан ортонормированный базис i, j, k, векторы которого образуют правую тройку векторов. Такой базис будем называть правым.

Используя определение векторного произведения, легко проверить следующую таблицу умножения :

Предложение 10.24 Пусть ,. Тогда

Доказательство. По условию ,. В силупредложений 10.20 и 10.21 получим

По тем же правилам

По таблице умножения . Аналогично находим,. Подставив полученные результаты в формулу (10.5), получим

Запомнить полученную формулу довольно тяжело. Чтобы облегчить этот процесс, введем еще два дополнительных объекта -- матрицу и определитель.

Матрицей второго порядка будем называть таблицу из четырех чисел, которая обозначается , матрицей третьего порядка называется таблица из 9 чисел --

Определителем матрицы второго порядка будем называть число . Определитель второго порядка обозначается.

Определителем матрицы третьего порядка будем называть число

Сформулируем словами правило вычисления определителя третьего порядка.

Берем первый элемент первой строки. Мысленно вычеркиваем строку и столбец с этим элементом. Умножаем этот элемент на определитель, оставшийся после вычеркивания. Затем пишем знак "-" и берем второй элемент первой строки. Мысленно вычеркиваем строку и столбец с этим элементом и пишем оставшийся определитель. Затем пишем знак "+" и третий элемент первой строки. Снова вычеркиваем строку и столбец с этим элементом и пишем оставшийся определитель.

В дальнейшем мы увидим, что столь сложно введенное понятие определителя оказывается очень полезным при решении систем линейных уравнений, определении линейной зависимости векторов и во многих других задачах.

Пример 10.1 Вычисление определителей:

1) .

2)

.

Формула для определителя третьего порядка позволяет кратко записать формулу для вычисления векторного произведения.

Предложение 10.25 Если в правом ортонормированном базисе i,j,k заданы координаты векторов ,, то

Доказательство. Достаточно лишь написать формулу вычисления приведенного в теореме определителя и сравнить ее с формулой предложения 10.24.

Пример 10.2 Пусть ,. Тогда

Задача. Пусть вершины треугольника расположены в точках ,,. Найдите площадь треугольника.

Решение. По предложению 10.22 . Находим,,

то есть . Тогда

Ответ: .

Задача. Найдите такой единичный вектор e, ортогональный векторам ,, что тройка векторовa,b,e -- левая.

Решение. Найдем вектор :

Вектор c ортогонален векторам a и b. Найдем его длину: . Тогда-- единичный вектор, ортогональный векторамa,b. Векторы a,b,c, а следовательно, и векторы a,b, . образуют правую тройку векторов. Поэтому.

Ответ: .

Для продолжения скачивания необходимо собрать картинку:



Нормальное распределение


Узнать стоимость за 15 минут
  • Тип работы
  • Часть диплома
  • Дипломная работа
  • Курсовая работа
  • Контрольная работа
  • Реферат
  • Научно - исследовательская работа
  • Отчет по практике
  • Ответы на билеты
  • Тест/экзамен online
  • Монография
  • Эссе
  • Доклад
  • Компьютерный набор текста
  • Компьютерный чертеж
  • Рецензия
  • Перевод
  • Репетитор
  • Бизнес-план
  • Конспекты
  • Проверка качества
  • Единоразовая консультация
  • Аспирантский реферат
  • Магистерская работа
  • Научная статья
  • Научный труд
  • Техническая редакция текста
  • Чертеж от руки
  • Диаграммы, таблицы
  • Презентация к защите
  • Тезисный план
  • Речь к диплому
  • Доработка заказа клиента
  • Отзыв на диплом
  • Публикация статьи в Вак
  • Публикация статьи в Scopus
  • Дипломная работа MBA
  • Повышение оригинальности
  • Шрифт, pt
  • 12 pt
  • 14 pt
  • Другой
Прикрепить файл
Заказать