Непрерывность функции в точке и на промежутке. С примерами

Примеры и условия непрерывности функции. Непрерывность на промежутке

К понятию непрерывной функции математика пришла, изучая в первую очередь различные законы движения. Пространство и время бесконечны, и зависимость, например, пути s от времени t , выраженная законом s = f(t) , даёт пример непрерывной функции f(t) . Непрерывно изменяется и температура нагреваемой воды, она также является непрерывной функцией от времени: T = f(t) . Непрерывна и линия, если её можно начертить, не отрывая карандаш от бумаги. Эта линия и является графиком непрерывной функции.

Графически функция непрерывна в точке , если её график не "разрывается" в этой точке. График такой непрерывной функции - показан на рисунке ниже.

Определение непрерывности функции через предел. Функция является непрерывной в точке при соблюдении трёх условий:

1. Функция определена в точке .

2. Существует предел функции в точке , при этом правый и левый пределы равны: .

3. Предел функции в точке равен значению функции в этой точке:

Если хотя бы одно из этих условий не соблюдено, функция не является непрерывной в точке. При этом говорят, что функция терпит разрыв, а точки на графике, в которых график прерывается, называются точками разрыва функции. График такой функции , терпящей разрыв в точке x=2 - на рисунке ниже.

Пример 1. Функция f(x) определена следующим образом:

Будет ли эта функция непрерывной в каждой из граничных точек её ветвей, то есть в точках x = 0 , x = 1 , x = 3 ?

Решение. Проверяем все три условия непрерывности функции в каждой граничной точке. Первое условие соблюдается, так как то, что функция определена в каждой из граничных точек, следует из определения функции. Осталось проверить остальные два условия.

Точка x = 0 . Найдём левосторонний предел в этой точке:

.

Найдём правосторонний предел:

.

Предел функции и значение функции в точке x = 0 должны быть найдены при той ветви функции, которая включает в себя эту точку, то есть второй ветви. Находим их:

.

Как видим, предел фукции и значение функции в точке x = 0 равны. Следовательно, функция является непрерывной в точке x = 0 .

Точка x = 1 . Найдём левосторонний предел в этой точке:

.

Найдём правосторонний предел:

Предел функции и значение функции в точке x = 1 должны быть найдены при той ветви функции, которая включает в себя эту точку, то есть второй ветви. Находим их:

.

Предел фукции и значение функции в точке x = 1 равны. Следовательно, функция является непрерывной в точке x = 1 .

Точка x = 3 . Найдём левосторонний предел в этой точке:

Найдём правосторонний предел:

Предел функции и значение функции в точке x = 3 должны быть найдены при той ветви функции, которая включает в себя эту точку, то есть второй ветви. Находим их:

.

Предел фукции и значение функции в точке x = 3 равны. Следовательно, функция является непрерывной в точке x = 3 .

Таким образом, данная функция является непрерывной в каждой граничной точке.

Непрерывное изменение функции можно определить как изменение постепенное, без скачков, при котором малое изменение аргумента влечёт малое изменение функции .

Проиллюстрируем это непрерывное изменение функции на примере.

Пусть над столом висит на нитке груз. Под действием этого груза нитка растягивается, поэтому расстояние l груза от точки подвеса нити является функцией массы груза m , то есть l = f(m) , m≥0 .

Если немного изменить массу груза, то расстояние l изменится мало. Таким образом, малым изменениям m соответствуют малые изменения l . Однако если масса груза близка к пределу прочности нити, то небольшое увеличение массы груза может вызвать разрыв нити: расстояние l скачкообразно увеличится и станет равным расстоянию от точки подвеса до поверхности стола. График функции l = f(m) изображён на рисунке. На участке этот график является непрерывной (сплошной) линией, а в точке он прерывается. В результате получается график, состоящий из двух ветвей. Во всех точках, кроме , функция l = f(m) непрерывна, а в точке она имеет разрыв.

Исследование функции на непрерывность может быть как самостоятельной задачей, так и одним из этапов полного исследования функции и построения её графика.

Непрерывность функции на промежутке

Примером непрерывной функции может служить любая из элементарных функций. Каждая элементарная функция непрерывна на любом отрезке, на котором она определена. Например, функции и непрерывны на любом отрезке [a, b] , функция непрерывна на отрезке [0, b] , функция непрерывна на любом отрезке, не содержащем точку a = 2 .

Пример 2. Исследовать функцию на непрерывность.

Решение. Проверяем первое условие. Функция не определена в точках - 3 и 3. По меньшей мере одно из условий непрерывности функции на всей числовой прямой не выполняется. Поэтому данная функция является непрерывной на интервалах

Пример 3. Определить, при каком значении параметра a непрерывна на всей области определения функция

Найдём левосторонний предел функции в точке :

.

Найдём правосторонний предел при :

.

Очевидно, что значение в точке x = 2 должно быть равно ax :

Ответ: функция непрерывна на всей области определения при a = 1,5 .

Пример 4. Определить, при каких значениях параметров a и b непрерывна на всей области определения функция

Найдём левосторонний предел функции в точке :

.

Следовательно, значение в точке должно быть равно 1:

.

Найдём левосторонний функции в точке :

.

Очевидно, что значение функции в точке должно быть равно :

Ответ: функция непрерывна на всей области определения при a = 1; b = -3 .

Основные свойства непрерывных функций

В математическом анализе доказаны некоторые свойства, которыми обладают непрерывные функции. Приведём важнейшие из этих свойств.

1. Если непрерывная на интервале функция принимает на концах интервала значения разных знаков, то в некоторой точке этого отрезка она принимает значение, равное нулю. В более формальном изложении это свойство дано в теореме, известной как первая теорема Больцано-Коши.

2. Функция f(x) , непрерывная на интервале [a, b] , принимает все промежуточные значения между значениями в концевых точках, то есть, между f(a) и f(b) . В более формальном изложении это свойство дано в теореме, известной как вторая теорема Больцано-Коши.

3. Если функция непрерывна на интервале, то на этом интервале она достигает своего наибольшего и своего наименьшего значения, т. е. если m - наименьшее, а M - наибольшее значение функции на интервале [a, b] , то найдутся на этом отрезке такие точки и , что и . Теорема, в которой изложено это свойство, называется второй теоремой Вейерштрасса.

Пример 5. Используя первое из приведённых выше свойств непрерывных функций, доказать, что уравнение имеет по меньшей мере один вещественный корень в интервале [1; 2] .

Пусть .

Вычислим значения функции при x = 1 и x = 2 .

.

.

Получили, что функция на концах интервала принимает значения разных знаков:

и , т. е.

Следовательно, в интервале [1; 2] существует такое число a , при котором f(a) = 0 . То есть, уравнение имеет по меньшей мере один вещественный корень в данном интервале.

Установление непрерывности функции может быть как самостоятельной задачей, так и частью Полного исследования функции и построения графика.

Пример 6. Есть ли у уравнения хотя бы один вещественный корень?

Функция определена на интервале .

Вычислим значения функции при x = 0 и .

.

.

и .

Следовательно, существует такое число a , при котором f(a) = 0 . То есть, уравнение имеет по меньшей мере один вещественный корень.



Найти экстремали функционала
Метод интегрирования по частям