Как составить уравнение плоскости по трём точкам?

Любые ли три точки пространства задают плоскость? Нет. Во-первых, точки должны быть различными. А во-вторых, они не должны лежать на одной прямой (сразу все три).

Уравнение плоскости, проходящей через триразличныеточки, которыене лежат на одной прямой,можно составить по формуле:

На самом деле это разновидность предыдущего способа, смотрим на картинку: Если известны три различные точки, не лежащие на одной прямой, то легко найти два неколлинеарных вектора, параллельных данной плоскости:

То есть, наша формула фактически совпадает с формулой предыдущего параграфа. Многие уже заметили явную аналогию с материалами статьи Уравнение прямой на плоскости. Закономерности будут сохраняться и дальше!

Чтобы не умереть от скуки, предлагаю раскрутить примеры-шарады:

Составить уравнение плоскости по точкам .

Решение: составим уравнение плоскости по трём точкам. Используем формулу:

Вот теперь и аналитически видно, что всё дело свелось к координатам двух векторов. Раскрываем определитель по первому столбцу, находим уравнение плоскости:

Больше ничего упростить нельзя, записываем:

Ответ:

Проверка напрашивается сама собой – в полученное уравнение плоскости необходимо подставить координаты каждойточки. Еслихотя бы однаиз трёх точек «не подойдёт», ищите ошибку.

Для «мёртвого» зачёта всегда выполняйте проверку мысленно или на черновике.

Составить уравнение плоскости, проходящей через точки и начало координат.

Это пример для самостоятельного решения. Ещё раз присмотримся к формуле . В каждом столбце определителя встречаются координаты точки, и это можно с выгодой использовать. В предложенной задаче даны три точки:, начало координат.В качестве точки можно выбрать любую из трёх точек. Подумайте, как рациональнее оформить решение! Да, и постарайтесь, не пропускать это задание, в самом конце решения увидите важный технический нюанс ;-)

Вектор нормали плоскости (нормальный вектор)

Вектор нормали плоскости – это вектор, который перпендикулярен данной плоскости. Очевидно, что у любой плоскости бесконечно много нормальных векторов. Но для решения задач нам будет хватать и одного. Если плоскость задана общим уравнением , то векторявляется вектором нормали данной плоскости. Просто до безобразия. Всё, что нужно сделать – это «снять» коэффициенты из уравнения плоскости.

Обещанного три экрана ждут, вернёмся к Примеру №1 и выполним его проверку. Напоминаю, что там требовалось построить уравнение плоскости по точке и двум векторам. В результате решения мы получили уравнение. Проверяем:

Во-первых, подставим координаты точки в полученное уравнение:Получено верное равенство, значит, точкадействительно лежит в данной плоскости.

Во-вторых, из уравнения плоскости снимаем вектор нормали: . Поскольку векторыпараллельны плоскости, а векторперпендикулярен плоскости, то должны иметь место следующие факты:. Перпендикулярность векторов легко проверить с помощьюскалярного произведения:

Вывод: уравнение плоскости найдено правильно.

В ходе проверки я фактически процитировал следующее утверждение теории: вектор параллелен плоскостив том и только том случае, когда.

Решим важную задачу, которая имеет отношение и к уроку Скалярное произведение векторов:

Найти единичный нормальный вектор плоскости .

Решение: Единичный вектор – это вектор, длина которого равна единице. Обозначим данный вектор через. Принципиально пейзаж выглядит так:Совершенно понятно, что векторыколлинеарны.

Сначала из уравнения плоскости снимем вектор нормали: .

Как найти единичный вектор? Для того чтобы найти единичный вектор , нужнокаждую координату вектора разделить на длину вектора.

Перепишем вектор нормали в виде и найдём его длину:

Согласно вышесказанному:

Ответ:

Проверка: , что и требовалось проверить.

Читатели, которые внимательно изучили последний параграф урока Скалярное произведение векторов, наверное, заметили, чтокоординаты единичного вектора – это в точности направляющие косинусы вектора:

Отвлечёмся от разобранной задачи: когда вам дан произвольный ненулевой вектор, и по условию требуется найти его направляющие косинусы (последние задачи урокаСкалярное произведение векторов), то вы, по сути, находите и единичный вектор, коллинеарный данному.

Фактически два задания в одном флаконе.

Необходимость найти единичный вектор нормали возникает в некоторых задачах математического анализа.

С выуживанием нормального вектора разобрались, теперь ответим на противоположный вопрос:

Для продолжения скачивания необходимо собрать картинку:



Геометрический смысл неопределенного интеграла
Точка пересечения прямой с плоскостью