Функция двух переменных.

Область определения и линии уровня

До сих пор нами рассматривалась простейшая функциональная модель, в которой функция зависит от единственного аргумента. Но при изучении различных явлений окружающего мира мы часто сталкиваемся с одновременным изменением более чем двух величин, и многие процессы можно эффективно формализовать функцией нескольких переменных , где – аргументы или независимые переменные. Начнём разработку темы с наиболее распространенной на практике функции двух переменных .

Функцией двух переменных называется закон, по которому каждой паре значений независимых переменных (аргументов) из области определения соответствует значение зависимой переменной (функции).

Данную функцию обозначают следующим образом:

либо , или же другой стандартной буквой:

Поскольку упорядоченная пара значений «икс» и «игрек» определяет точку на плоскости, то функцию также записывают через , где – точка плоскости с координатами . Такое обозначение широко используется в некоторых практических заданиях.

Геометрический смысл функции 2-х переменных очень прост. Если функции одной переменной соответствует определённая линия на плоскости (например, – всем знакомая школьная парабола), то график функции двух переменных располагается в трёхмерном пространстве. На практике чаще всего приходится иметь дело с поверхностью, но иногда график функции может представлять собой, например, пространственную прямую (ые) либо даже единственную точку.

С элементарным примером поверхности мы хорошо знакомы ещё из курса аналитической геометрии – это плоскость . Предполагая что , уравнение легко переписать в функциональном виде:

Важнейший атрибут функции 2-х переменных – это уже озвученная область определения.

Областью определения функции двух переменных называется множество всех пар , для которых существует значение .

Графически область определения представляет собой всю плоскость либо её часть. Так, областью определения функции является вся координатная плоскость – по той причине, что для любой точки существует значение .

Но такое праздный расклад бывает, конечно же, не всегда:

Как найти область определения функции двух переменных?

Рассматривая различные понятия функции нескольких переменных, полезно проводить аналогии с соответствующими понятиями функции 1-ой переменной. В частности, при выяснении области определения мы обращали особое внимание на те функции, в которых есть дроби, корни чётной степени, логарифмы и т. д. Здесь всё точно так же!

Задача на нахождение области определения функции двух переменных практически со 100-ной вероятностью встретится вам в тематической работе, поэтому я разберу приличное количество примеров:

Найти область определения функции

Решение: так как знаменатель не может обращаться в ноль, то:

Ответ: вся координатная плоскость кроме точек, принадлежащих прямой

Да-да, ответ лучше записать именно в таком стиле. Область определения функции 2-х переменных редко обозначают каким-либо символом, гораздо чаще используют словесное описание и/или чертёж.

Если бы по условию требовалось выполнить чертёж, то следовало бы изобразить координатную плоскость и пунктиром провести прямую . Пунктир сигнализирует о том, что линия не входит в область определения.

Как мы увидим чуть позже, в более трудных примерах без чертежа и вовсе не обойтись.

Найти область определения функции

Решение: подкоренное выражение должно быть неотрицательным:

Графическое изображение здесь тоже примитивно: чертим декартову систему координат, сплошной линией проводим прямую и штрихуем верхнюю полуплоскость. Сплошная линия указывает на тот факт, что она входит в область определения.

Внимание! Если вам ХОТЬ ЧТО-ТО не понятно по второму примеру, пожалуйста, подробно изучите/повторите урок Линейные неравенства – без него придётся очень туго!

Миниатюра для самостоятельного решения:

Найти область определения функции

Двухстрочное решение и ответ в конце урока.

Решение: легко понять, что такая формулировка задачи требует выполнения чертёжа (даже если область определения очень проста). Но сначала аналитика: подкоренное выражением должно быть неотрицательным: и, учитывая, что знаменатель не может обращаться в ноль, неравенство становится строгим:

Как определить область, которую задаёт неравенство ? Рекомендую тот же алгоритм действий, что и при решении линейных неравенств.

Сначала чертим линию, которую задаёт соответствующее равенство. Уравнение определяет окружность с центром в начале координат радиуса , которая делит координатную плоскость на две части – «внутренность» и «внешность» круга. Так как неравенство у нас строгое, то сама окружность заведомо не войдёт в область определения и поэтому её нужно провести пунктиром.

Теперь берём произвольную точку плоскости, не принадлежащую окружности , и подставляем её координаты в неравенство . Проще всего, конечно же, выбрать начало координат :

Получено неверное неравенство, таким образом, точка не удовлетворяет неравенству . Более того, данному неравенству не удовлетворяет и любая точка, лежащая внутри круга, и, стало быть, искомая область определения – внешняя его часть. Область определения традиционно штрихуется:

Желающие могут взять любую точку, принадлежащую заштрихованной области и убедиться, что её координаты удовлетворяют неравенству . Кстати, противоположное неравенство задаёт круг с центром в начале координат, радиуса .

Ответ: внешняя часть круга

Вернёмся к геометрическому смыслу задачи: вот мы нашли область определения и заштриховали её, что это значит? Это значит, что в каждой точке заштрихованной области существует значение «зет» и графически функция представляет собой следующую поверхность:

На схематическом чертеже хорошо видно, что данная поверхность местами расположена над плоскостью (ближний и дальний от нас октанты), местами – под плоскостью (левый и правый относительно нас октанты). Также поверхность проходит через оси . Но поведение функции как таковое нам сейчас не очень интересно – важно, что всё это происходит исключительно в области определения. Если мы возьмём любую точку , принадлежащую кругу – то никакой поверхности там не будет (т.к. не существует «зет»), о чём и говорит круглый пробел в середине рисунка.

Пожалуйста, хорошо осмыслите разобранный пример, поскольку в нём я подробнейшим образом разъяснил саму суть задачи.

Следующее задание для самостоятельного решения:

Краткое решение и чертёж в конце урока. Вообще, в рассматриваемой теме среди линий 2-го порядка наиболее популярна именно окружность, но, как вариант, в задачу могут «затолкать» эллипс, гиперболу или параболу.

Идём на повышение:

Решение: подкоренное выражение должно быть неотрицательным: и знаменатель не может равняться нулю: . Таким образом, область определения задаётся системой .

С первым условием разбираемся по стандартной схеме рассмотренной на уроке Линейные неравенства: чертим прямую и определяем полуплоскость, которая соответствует неравенству . Поскольку неравенство нестрогое, то сама прямая также будет являться решением.

Со вторым условием системы тоже всё просто: уравнение задаёт ось ординат, и коль скоро , то её следует исключить из области определения.

Выполним чертёж, не забывая, что сплошная линия обозначает её вхождение в область определения, а пунктир – исключение из этой области:

Следует отметить, что здесь мы уже фактически вынуждены сделать чертёж. И такая ситуация типична – во многих задачах словесное описание области затруднено, а даже если и опишите, то, скорее всего, вас плохо поймут и заставят изобразить область.

Ответ: область определения:

К слову, такой ответ без чертежа действительно смотрится сыровато.

Ещё раз повторим геометрический смысл полученного результата: в заштрихованной области существует график функции , который представляет собой поверхность трёхмерного пространства. Эта поверхность может располагаться выше/ниже плоскости , может пересекать плоскость – в данном случае нам всё это параллельно. Важен сам факт существования поверхности, и важно правильно отыскать область, в которой она существует.

Это пример для самостоятельного решения. Примерный образец чистового оформления задачи в конце урока.

Не редкость, когда вроде бы простые на вид функции вызывают далеко не скороспелое решение:

Решение: используя формулу разности квадратов, разложим подкоренное выражение на множители: .

Произведение двух множителей неотрицательно , когда оба множителя неотрицательны: ИЛИ когда оба неположительны: . Это типовая фишка. Таким образом, нужно решить две системы линейных неравенств и ОБЪЕДИНИТЬ полученные области. В похожей ситуации вместо стандартного алгоритма гораздо быстрее работает метод научного, а точнее, практического тыка =)

Чертим прямые , которые разбивают координатную плоскость на 4 «уголка». Берём какую-нибудь точку, принадлежащую верхнему «уголку», например, точку и подставляем её координаты в уравнения 1-ой системы: . Получены верные неравенства, а значит, решением системы является весь верхний «уголок». Штрихуем.

Теперь берём точку , принадлежащую правому «уголку». Осталась 2-ая система, в которую мы и подставляем координаты этой точки: . Второе неравенство неверно, следовательно, и весь «правый» уголок не является решением системы .

Аналогичная история с «левым» уголком, который тоже не войдёт в область определения.

И, наконец, подставляем во 2-ую систему координаты подопытной точки нижнего «уголка»: . Оба неравенства верны, а значит, решением системы является и весь нижний «уголок», который тоже следует заштриховать.

В реальности так подробно расписывать, естественно, не надо – все закомментированные действия легко выполняются устно!

Ответ: область определения представляет собой объединение решений систем .

Как вы догадываетесь, без чертежа такой ответ вряд ли пройдёт, и это обстоятельство вынуждает взять в руки линейку с карандашом, хоть того и не требовало условие.

А это ваш орешек:

Хороший студент всегда скучает по логарифмам:

Решение: аргумент логарифма строго положителен, поэтому область определения задаётся системой .

Неравенство указывает на правую полуплоскость и исключает ось .

Со вторым условием ситуация более затейлива, но тоже прозрачна. Вспоминаем синусоиду. В качестве аргумента выступает «игрек», но это не должно смущать – игрек, так игрек, зю, так зю. Где синус больше нуля? Синус больше нуля, например, на интервале . Поскольку функция периодична, то таких интервалов бесконечно много и в свёрнутом виде решение неравенства запишется следующим образом:

, где – произвольное целое число.

Бесконечное количество промежутков, понятно, не изобразить, поэтому ограничимся интервалом и его соседями:

Выполним чертёж, не забывая, что согласно первому условию, наше поле деятельности ограничивается строго правой полуплоскостью:

мда …какой-то чертёж-призрак получился… доброе приведение высшей математики…

Ответ:

Следующий логарифм ваш:

В ходе решения придётся построить параболу, которая поделит плоскость на 2 части – «внутренность», находящуюся между ветвями, и внешнюю часть. Методика нахождения нужной части неоднократно фигурировала в статье Линейные неравенства и предыдущих примерах этого урока.

Решение, чертёж и ответ в конце урока.

Заключительные орешки параграфа посвящены «аркам»:

Решение: аргумент арксинуса должен находиться в следующих пределах:

Дальше есть две технические возможности: более подготовленные читатели по аналогии с последними примерами урока Область определения функции 1-ой переменной могут «ворочать» двойное неравенство и оставить в середине «игрек». Чайникам же рекомендую преобразовать «паровозик» в равносильную систему неравенств:

Система решается как обычно – строим прямые и находим нужные полуплоскости. В результате:

Обратите внимание, что здесь границы входят в область определения и прямые проводятся сплошными линиями. За этим всегда нужно тщательно следить, чтобы не допустить грубой ошибки.

Ответ: область определения представляет собой решение системы

В образце решения используется продвинутая техника – преобразуется двойное неравенство.

На практике также иногда встречаются задачи на нахождение области определения функции трёх переменных . Областью определения функции 3-х переменных может являться всё трёхмерное пространство, либо его часть. В первом случае функция определена для любой точки пространства, во втором – только для тех точек , которые принадлежат некоторому пространственному объекту, чаще всего – телу. Это может быть прямоугольный параллелепипед, эллипсоид, «внутренность» параболического цилиндра и т.д. Задача отыскания области определения функции 3-х переменных обычно состоит в нахождении этого тела и выполнении трёхмерного чертежа. Однако такие примеры чрезвычайно редкИ (нашёл у себя всего пару штук), поэтому я ограничусь лишь обзорным абзацем и продолжу нарезать функцию 2-х переменных:

Линии уровня

Для лучшего понимания этого термина будем сравнивать ось с высотой: чем больше значение «зет» – тем больше высота, чем меньше значение «зет» – тем высота меньше. Также высота может быть и отрицательной.

Функция в своей области определения представляет собой пространственный график, для определённости и бОльшей наглядности будем считать, что это тривиальная поверхность. Что такое линии уровня? Образно говоря, линии уровня – это горизонтальные «срезы» поверхности на различных высотах. Данные «срезы» или правильнее сказать, сечения проводятся плоскостями , после чего проецируются на плоскость .

Определение: линией уровня функции называется линия на плоскости , в каждой точке которой функция сохраняет постоянное значение: .

Таким образом, линии уровня помогают выяснить, как выглядит та или иная поверхность – причём помогают без построения трёхмерного чертежа! Рассмотрим конкретную задачу:

Решение: исследуем форму данной поверхности с помощью линий уровня. Для удобства развернём запись «задом наперёд»:

Очевидно, что в данном случае «зет» (высота) заведомо не может принимать отрицательные значения (так как сумма квадратов неотрицательна). Таким образом, поверхность располагается в верхнем полупространстве (над плоскостью ).

Поскольку в условии не сказано, на каких конкретно высотах нужно «срезать» линии уровня, то мы вольнЫ выбрать несколько значений «зет» на своё усмотрение.

Исследуем поверхность на нулевой высоте, для этого поставим значение в равенство :

Решением данного уравнения является точка . То есть, при линия уровня представляет собой точку.

Поднимаемся на единичную высоту и «рассекаем» нашу поверхность плоскостью (подставляем в уравнение поверхности):

Таким образом, для высоты линия уровня представляет собой окружность с центром в точке единичного радиуса.

Напоминаю, что все «срезы» проецируются на плоскость , и поэтому у точек я записываю две, а не три координаты!

Теперь берём, например, плоскость и «разрезаем ей» исследуемую поверхность (подставляем в уравнение поверхности):

Таким образом, для высоты линия уровня представляет собой окружность с центром в точке радиуса .

И, давайте построим ещё одну линию уровня, скажем, для :

окружность с центром в точке радиуса 3.

Линии уровня, как я уже акцентировал внимание, располагаются на плоскости , но каждая линия подписывается – какой высоте она соответствует:

Нетрудно понять, что другие линии уровня рассматриваемой поверхности тоже представляют собой окружности, при этом, чем выше мы поднимаемся вверх (увеличиваем значение «зет») – тем больше становится радиус. Таким образом, сама поверхность представляет собой бесконечную чашу с яйцевидным дном, вершина которой расположена на плоскости . Эта «чаша» вместе с осью «выходит прямо на вас» из экрана монитора, то есть вы смотрите в её дно =) И это неспроста! Только я так убойно наливаю на посошок =) =)

Ответ: линии уровня данной поверхности представляют собой концентрические окружности вида

Примечание: при получается вырожденная окружность нулевого радиуса (точка)

Само понятие линии уровня пришло из картографии. Перефразируя устоявшийся математический оборот, можно сказать, что линия уровня – это географическое место точек одинаковой высоты. Рассмотрим некую гору с линиями уровня 1000, 3000 и 5000 метров:

На рисунке хорошо видно, что левый верхний склон горы гораздо круче правого нижнего склона. Таким образом, линии уровня позволяют отразить рельеф местности на «плоской» карте. Кстати, здесь приобретают вполне конкретный смысл и отрицательные значения высоты – ведь некоторые участки поверхности Земли располагаются ниже нулевой отметки уровня мирового океана.

Заключительное задание для самостоятельного решения:

Тут в отличие от предыдущей задачи даны конкретные значения «зет», для которых надо построить линии, и придумывать ничего не надо. Кажется слишком простым? Впечатление обманчиво – далеко не все читатели «гладко» оформят решение ;-)

Исследование формы поверхности с помощью линий уровня – метод эффективный, но довольно трудозатратный, поэтому крайне желательно знать, как выглядят распространённые на практике поверхности и быстро определять их по уравнению. На следующем уроке о пространственных поверхностях вы сможете не только почерпнуть много новой информации, но и научиться грамотно строить трёхмерные чертежи.

Решения и ответы:

Пример 3: Решение: подкоренное выражение должно быть неотрицательным, кроме того, знаменатель не может обращаться в ноль, таким образом: .

Ответ: полуплоскость , исключая саму прямую

Пример 5: Решение: подкоренное выражение должно быть неотрицательным:

или, «разворачивая» неравенство:

Изобразим область определения на чертеже:

Ответ: – круг с центром в начале координат, радиуса .

Пример 7: Решение: найдём область определения:

Ответ: область определения представляет собой решение системы линейных неравенств

Пример 9: Решение: найдём область определения:

Неравенство справедливо, когда (1-ая координатная четверть) или когда (3-я координатная четверть).

Условие выполнено для всех точек плоскости, кроме начала координат.

Изобразим область определения на чертеже:

Ответ:

Пример 11: Решение: найдём область определения:

Неравенству соответствует «внешняя» часть плоскости относительно параболы. Условие исключает из области определения ось абсцисс.

Ответ:

Пример 13: Решение: аргумент арккосинуса находится в пределах:

Вычтем «тройку» из каждой части:

Умножим каждую часть на –1. Так как умножение проводится на отрицательное число, значки «меньше либо равно» следует поменять на «больше либо равно»:

«Развернём» неравенство в привычном направлении:

Область определения представляет собой кольцо, ограниченное концентрическими окружностями :

Ответ: кольцо

Пример 15: Решение: Перепишем функцию в виде и найдём линии уровня для различных значений:

1) Если , то – гипербола, расположенная во 2-ой и 4-ой координатных четвертях.

2) Если , то . Полученное равенство справедливо в двух случаях: либо и – любое (это ось ординат), либо и – любое (это ось абсцисс). Таким образом, линия уровня представляет собой две пересекающиеся прямые (координатные оси).

3) Если , то – гипербола, расположенная в 1-ой и 3-ей координатных четвертях.

4) Если , то – гипербола, расположенная в 1-ой и 3-ей координатных четвертях.

Ответ: линии уровня функции имеют вид , где . Если , то линии уровня представляют собой гиперболы, причём:

– в случае они расположены 2-ой и 4-ой координатных четвертях, а сама поверхность – ниже плоскости ;

– в случае гиперболы расположены 1-ой и 3-ей координатных четвертях, а сама поверхность – выше плоскости .

При линия уровня распадается на две пересекающие прямые (координатные оси), то есть график функции проходит через них.

Примечание: исследуемая поверхность по форме весьма напоминает поверхность Примера 4.



Формула Тейлора для функции