Кривые второго порядка эллипс, окружность, парабола, гипербола

Федеральное агентство по образованию Российской Федерации

Государственное образовательное учреждение высшего профессионального образования Южно-Уральский государственный университет.

Кафедра «Товароведение и экспертиза потребительских товаров»

«Кривые второго порядка: эллипс, окружность, парабола, гипербола»

По дисциплине Высшая математика.

Пермина Александра Николаевна

студент группы 131

Кравченко Ольга Владимировна

Кривые второго порядка: эллипс, окружность, парабола, гипербола.

Кривыми второго порядка на плоскости называются линии пересечения кругового конуса с плоскостями, не проходящими через его вершину.

Если такая плоскость пересекает все образующие одной полости конуса, то в сечении получается эллипс , при пересечении образующих обеих полостей – гипербола , а если секущая плоскость параллельна какой-либо образующей, то сечением конуса является парабола .

Кривая второго порядка на плоскости в прямоугольной системе координат описывается уравнением:

Множество всех точек на плоскости, для которых сумма расстояний до двух фиксированных точек F 1 и F 2 есть заданная постоянная величина, называется эллипсом .

Каноническое уравнение эллипса.

Для любого эллипса можно найти декартову систему координат такую, что эллипс будет описываться уравнением (каноническое уравнение эллипса):

Оно описывает эллипс с центром в начале координат, оси которого совпадают с осями координат. Число a называют большой полуосью эллипса , а число bего малой полуосью .

  • Фокальное свойство. Если F1 и F2 — фокусы эллипса, то для любой точки X, принадлежащей эллипсу, угол между касательной в этой точке и прямой ( F1X ) равен углу между этой касательной и прямой ( F2X ) .
  • Прямая, проведённая через середины отрезков, отсечённых двумя параллельными прямыми, пересекающими эллипс, всегда будет проходить через центр эллипса. Это позволяет построением с помощью циркуля и линейки легко получить центр эллипса, а в дальнейшем оси, вершины и фокусы.
  • Эволютой эллипса является астроида.
  • Эксцентриситетом эллипса называется отношение

Эллипс также можно описать как

  • фигуру, которую можно получить из окружности, применяя аффинное преобразование
  • ортогональную проекцию окружность на плоскость.
  • Пересечение плоскости и кругового цилиндра.

Каноническое уравнение окружности.

Общее уравнение окружности записывается как:

Уравнение окружности радиуса R с центром в начале координат:

  • Прямая может не иметь с окружностью общих точек; иметь с окружностью одну общую точку (касательная); иметь с ней две общие точки (секущая).
  • Касательная к окружности всегда перпендикулярна её диаметру, один из концов которого является точкой касания.
  • Через три точки, не лежащие на одной прямой, можно провести окружность, и притом только одну.
  • Точка касания двух окружностей лежит на линии, соединяющей их центры.
  • Длину окружности с радиусом R можно вычислить по формуле C = 2π R .
  • Вписанный угол либо равен половине центрального угла, опирающегося на его дугу, либо дополняет половину этого угла до 180°.
    • Два вписанных угла, опирающиеся на одну и ту же дугу, равны.
    • Вписанный угол, опирающийся на дугу длиной в половину окружности равен 90°.
  • Угол между двумя секущими, проведенными из точки, лежащей вне окружности равен полуразности мер дуг, лежащих между секущими.
  • Угол между пересекающимися хордами равен полусумме мер дуги лежащей в угле и дуги напротив нее.
  • Угол между касательной и хордой равен половине дуги, стягиваемой хордой.
  • Отрезки касательных к окружности, проведённых из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
  • При пересечении двух хорд произведение отрезков, на которые делится одна из них точкой пересечения, равно произведению отрезков другой.
  • Произведение длин расстояний от выбранной точки до двух точек пересечения окружности и секущей проходящей через выбранную точку не зависит от выбора секущей и равно абсолютной величине степени точки относительно окружности.
      Квадрат длины отрезка касательной равен произведению длин отрезков секущей и равен абсолютной величине степени точки относительно окружности.
  • Окружность является простой плоской кривой второго порядка.
  • Окружность является коническим сечением и частным случаем эллипса.

Параболой называется множество точек плоскости, каждая из которых находится на одинаковом расстоянии от данной точки, называемой фокусом, и от данной прямой, называемой директрисой и не проходящей через фокус.

где р (фокальный параметр) - расстояние от фокуса до директрисы

  • Парабола — кривая второго порядка.
  • Она имеет ось симметрии, называемой осью параболы . Ось проходит через фокус и перпендикулярна директрисе.
  • Пучок лучей параллельных оси, отражаясь в параболе, собирается в её фокусе. Для параболы с вершиной в начале координат (0; 0) и положительным направлением ветвей фокус находится в точке (0; 0,25).
  • Если фокус параболы отразить относительно касательной, то его образ будет лежать на директрисе.
  • Парабола является антиподерой прямой.
  • Все параболы подобны. Расстояние между фокусом и директрисой определяет масштаб.
  • При вращении параболы вокруг оси симметрии получается эллиптический параболоид.

· Прямая пересекает параболу не более чем в двух точках.

· Эксцентриситет параболы е =1.

Геометрическое место точек плоскости, для которых разность расстояний до двух фиксированных точек есть величина постоянная, называют гиперболой .

· Гипербола имеет две оси симметрии (главные оси гиперболы) и центр симметрии (центр гиперболы). При этом одна из этих осей пересекается с гиперболой в двух точках, называемых вершинами гиперболы. Она называется действительной осью гиперболы (ось Ох для канонического выбора координатной системы). Другая ось не имеет общих точек с гиперболой и называется ее мнимой осью (в канонических координатах – ось Оу ). По обе стороны от нее расположены правая и левая ветви гиперболы. Фокусы гиперболы располагаются на ее действительной оси.

· Каждая гипербола имеет пару асимптот:

· Расстояние от начала координат до одного из фокусов гиперболы называют фокусным расстоянием гиперболы

· Эксцентриситетом гиперболы называется величина е = с / а. Эксцентриситет гиперболы e > 1

· Расстояние от вершины гиперболы до асимптоты вдоль направления параллельного оси ординат называется малой или мнимой полуосью гиперболы

· Расстояние от фокуса до гиперболы вдоль прямой, параллельной оси ординат называется фокальным параметром

Канатиков А.Н., Крищенко А.П. Аналитическая геометрия: Учеб. для вузов. 2-е изд. / Под ред. В.С. Зарубина, А.П. Крищенко. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2000 – 388с.(Сер. Математика в техническом университете; Вып. III ).

ДОБАВИТЬ КОММЕНТАРИЙ [можно без регистрации]

перед публикацией все комментарии рассматриваются модератором сайта - спам опубликован не будет

Хотите опубликовать свою статью или создать цикл из статей и лекций?

Это очень просто – нужна только регистрация на сайте.



Проекция вектора на ось