Понятие определенного интеграла.

Понятие определенного интеграла широко используется в математике и прикладных науках. С его помощью вычисляют площади, ограниченные кривыми, объемы тел произвольной формы и т.д. Рассмотрим задачу по определению площади криволинейной трапе­ции, приводящую к понятию определенного интеграла.

Фигура, ограниченная данной кривой у = f(x), отрезком [а,Ь] оси Ох и прямыми х = а и х = Ь, называется криволинейной трапецией

Предположим, что f(x) > 0 на отрезке [а,Ь], т.е. криволинейная трапеция расположена над осью Ох. Для вычисления площади S данной криволинейной трапеции разобьем отрезок [а,Ь] произвольным образом на п частей и обозначим точки деления:а = х0 <x1<x2<…<xn-1<xn = b Проведя из этих точек перпендикуляры до пересечения точек с кривой, получим значение функции в этих точках:

-

В результате площадь криволинейной трапеции окажется разбитой на сумму площадей элементарных криволинейных трапеций.

Далее постоим ступенчатую фигуру, состоящую из прямоугольников, имеющим основанием отрезки Δхо, Δх1 . , Δxn-1, высотой –ординаты f(co), f(c1), f(с2). f(сn-1) Эта фигура ограничена ломаной линией. Площадь Sn полученной ступенчатой фигуры зависит от числа п и длины отрезков Δxi(i = О, 1, 2 . п-1). При неограниченном увеличении числа п и уменьшении отрезка Δхi ломанная, ограничивающая ступенчатую фигуру, будет приближаться к площади трапеции S. Отсюда ясно, что площадью криволинейной трапеции, ограниченной линией у = f(х), следует называть предел, к которому стремиться переменная площадь Sn ступенчатой фигуры, ограниченной ломаной линией, при стремлении к нулю длины отрезка Δxi(i = О, 1, 2 . п-1). Площадь Sn равна сумме площадей прямоугольников, построенных на отрезках:

Если теперь неограниченно увеличивая п частей разбиения так, чтобы длина отрезков Δxi(i = О, 1, 2 . п-1) стремилась к нулю, то площадь криволинейной трапеции будет равна пределу суммы, каждое слагаемое которой равно произведению значения функции в точке отрезка f(ci) на величину этого отрезка Δхi;

Если существует конечный предел этой интегральной суммы, то этот предел называется определенным интегралом от функции f(x) на отрезке [а, Ь] и обозначают:

(читается «определенный интеграл от а до b от икс дэ икс»).

При этом f(x) называется подынтегральной функцией, х переменной интегрирования, числа а и b - соответственно нижним и

верхним пределом интегрирования.

Определенный интеграл есть число, его значение зависит от вида функции f(x) и значений верхнего и нижнего пределов. На основании выше изложенных формул можно записать: площадь криволинейной трапеции численно равна интегралу от функции, ограничивающей трапецию, взятому по основанию [а, Ь]:



Разложение вектора по ортам координатных осей Модуль вектора Направляющие косинусы


Узнать стоимость за 15 минут
  • Тип работы
  • Часть диплома
  • Дипломная работа
  • Курсовая работа
  • Контрольная работа
  • Реферат
  • Научно - исследовательская работа
  • Отчет по практике
  • Ответы на билеты
  • Тест/экзамен online
  • Монография
  • Эссе
  • Доклад
  • Компьютерный набор текста
  • Компьютерный чертеж
  • Рецензия
  • Перевод
  • Репетитор
  • Бизнес-план
  • Конспекты
  • Проверка качества
  • Единоразовая консультация
  • Аспирантский реферат
  • Магистерская работа
  • Научная статья
  • Научный труд
  • Техническая редакция текста
  • Чертеж от руки
  • Диаграммы, таблицы
  • Презентация к защите
  • Тезисный план
  • Речь к диплому
  • Доработка заказа клиента
  • Отзыв на диплом
  • Публикация статьи в Вак
  • Публикация статьи в Scopus
  • Дипломная работа MBA
  • Повышение оригинальности
  • Шрифт, pt
  • 12 pt
  • 14 pt
  • Другой
Прикрепить файл
Заказать