§23. Производные высших порядков

23. ПРОИЗВОДНЫЕ ВЫСШИХ ПОРЯДКОВ

23.1. Производные высших порядков явно заданной функции

Производная у'=ƒ'(х) функции у=ƒ(х) есть также функция от х и называется производной первого порядка.

Если функция ƒ'(х) дифференцируема, то ее производная называется производной второго порядка и обозначается у"

Производная от производной второго порядка, если она существует, называется производной третьего порядка и обозначается у'" (или ƒ'"(х)). Итак, у'"=(y")'

Производной n-го порядка (или n-й производной) называется производная от производной (n-1) порядка:

Производные порядка выше первого называются производными высших порядков.

Начиная с производной четвертого порядка, производные обозначают римскими цифрами или числами в скобках (у ν или у (5) — производная пятого порядка).

Найти производную 13-го порядка функции у=sinx.

23.2. Механический смысл производной второго порядка

Пусть материальная точка М движется прямолинейно по закону S=f(t). Как уже известно, производная S ¢ t равна скорости точки в данный момент времени: S't=V.

Покажем, что вторая производная от пути по времени есть величина, ускорения прямолинейного движения точки, т. е. S"=α.

Пусть в момент времени t скорость точки равна V, а в момент t+∆t — скорость равна V+∆V, т. е. за промежуток времени ∆t скорость изменилась на величину ∆V.

Отношение ∆V/∆t выражает среднее ускорение движения точки за время ∆t. Предел этого отношения при ∆t→0 называется ускорением точки М в данный момент t и обозначается буквой α:

23.3. Производные высших порядков неявно заданной функции

Пусть функция у=ƒ(х) задана неявно в виде уравнения F(x;y)=0.

Продифференцировав это уравнение по х и разрешив полученное уравнение относительно у', найдем производную первого порядка (первую производную). Продифференцировав по х первую производную, получим вторую производую от неявной функции. В нее войдут х,у,у ¢ . Подставляя уже найденное значение у' в выражение второй производной, выразим у" через х и у.

Аналогично поступаем для нахождения производной третьего (и дальше) порядка.

Найти у'", если х 2 +у 2 =1.

Решение: Дифференцируем уравнение х 2 +у 2 -1=0 по х: 2х+2у · у ¢ =0.

Отсюда у'=-х/у. Далее имеем:

(так как х 2 +у 2 =1), следовательно,

23.4. Производные высших порядков от функций, заданных параметрически

Пусть функция у=ƒ(х) задана параметрическими уравнениями

Как известно, первая производная у'х находится по формуле (23.1)

Найдем вторую производную от функции заданной параметрически. Из определения второй производной и равенства (23.1) следует, что

Найти вторую производную функции

Решение: По формуле (23.1)

Тогда по формуле (23.2)

Заметим, что найти у"хх можно по преобразованной формуле (23.2):



Метод неопределенных коэффициентов