Основные операции над матрицами (сложение, умножение, транспонирование) и их свойства.

В этой теме будут рассмотрены такие операции, как сложение и вычитание матриц, умножение матрицы на число, умножение матрицы на матрицу, транспонирование матрицы. Все обозначения, которые используются на данной странице, взяты из предыдущей темы "Матрицы. Виды матриц. Основные термины".

Сложение и вычитание матриц.

Аналогичное определение вводят и для разности матриц:

Запись "$i=\overline<1,m>$" означает, что параметр $i$ изменяется от 1 до m. Например, запись $i=\overline<1,5>$ говорит о том, что параметр $i$ принимает значения 1, 2, 3, 4, 5.

Стоит обратить внимание, что операции сложения и вычитания определены только для матриц одинакового размера. Вообще, сложение и вычитание матриц – операции, ясные интуитивно, ибо означают они, по сути, всего лишь суммирование или вычитание соответствующих элементов.

Заданы три матрицы:

Можно ли найти матрицу $A+F$? Найти матрицы $C$ и $D$, если $C=A+B$ и $D=A-B$.

Матрица $A$ содержит 2 строки и 3 столбца (иными словами – размер матрицы $A$ равен $2\times 3$), а матрица $F$ содержит 2 строки и 2 столбца. Размеры матрицы $A$ и $F$ не совпадают, поэтому сложить их мы не можем, т.е. операция $A+F$ для данных матриц не определена.

Размеры матриц $A$ и $B$ совпадают, т.е. данные матрицы содержат равное количество строк и столбцов, поэтому к ним применима операция сложения.

Найдем матрицу $D=A-B$:

Умножение матрицы на число.

Попросту говоря, умножить матрицу на некое число – означает умножить каждый элемент заданной матрицы на это число.

Задана матрица: $ A=\left(\begin -1 & -2 & 7 \\ 4 & 9 & 0 \end \right)$. Найти матрицы $3\cdot A$, $-5\cdot A$ и $-A$.

Запись $-A$ есть сокращенная запись для $-1\cdot A$. Т.е., чтобы найти $-A$ нужно все элементы матрицы $A$ умножить на (-1). По сути, это означает, что знак всех элементов матрицы $A$ изменится на противоположный:

Произведение двух матриц.

Определение этой операции громоздко и, на первый взгляд, непонятно. Поэтому сначала укажу общее определение, а потом подробно разберем, что оно означает и как с ним работать.

Пошагово умножение матриц разберем на примере. Однако сразу стоит обратить внимание, что перемножать можно не все матрицы. Если мы хотим умножить матрицу $A$ на матрицу $B$, то сперва нужно убедиться, что количество столбцов матрицы $A$ равно количеству строк матрицы $B$ (такие матрицы часто называют согласованными). Например, матрицу $A_<5\times 4>$ (матрица содержит 5 строк и 4 столбца), нельзя умножать на матрицу $F_<9\times 8>$ (9 строк и 8 столбцов), так как количество столбцов матрицы $A$ не равно количеству строк матрицы $F$, т.е. $4\neq 9$. А вот умножить матрицу $A_<5\times 4>$ на матрицу $B_<4\times 9>$ можно, так как количество столбцов матрицы $A$ равно количеству строк матрицы $B$. При этом результатом умножения матриц $A_<5\times 4>$ и $B_<4\times 9>$ будет матрица $C_<5\times 9>$, содержащая 5 строк и 9 столбцов:

Для начала сразу определим размер матрицы $C$. Так как матрица $A$ имеет размер $3\times 4$, а матрица $B$ имеет размер $4\times 2$, то размер матрицы $C$ таков: $3\times 2$:

Итак, в результате произведения матриц $A$ и $B$ мы должны получить матрицу $C$, состоящую из трёх строк и двух столбцов: $ C=\left(\begin c_ <11>& c_ <12>\\ c_ <21>& c_ <22>\\ c_ <31>& c_ <32>\end \right)$. Если обозначения элементов вызывают вопросы, то можно глянуть предыдущую тему: "Матрицы. Виды матриц. Основные термины", в начале которой поясняется обозначение элементов матрицы. Наша цель: найти значения всех элементов матрицы $C$.

Начнем с элемента $c_<11>$. Чтобы получить элемент $c_<11>$ нужно найти сумму произведений элементов первой строки матрицы $A$ и первого столбца матрицы $B$:

Чтобы найти сам элемент $c_<11>$ нужно перемножить элементы первой строки матрицы $A$ на соответствующие элементы первого столбца матрицы $B$, т.е. первый элемент на первый, второй на второй, третий на третий, четвертый на четвертый. Полученные результаты суммируем:

$$ c_<11>=-1\cdot (-9)+2\cdot 6+(-3)\cdot 7 + 0\cdot 12=0. $$

Продолжим решение и найдем $c_<12>$. Для этого придётся перемножить элементы первой строки матрицы $A$ и второго столбца матрицы $B$:

Аналогично предыдущему, имеем:

$$ c_<12>=-1\cdot 3+2\cdot 20+(-3)\cdot 0 + 0\cdot (-4)=37. $$

Все элементы первой строки матрицы $C$ найдены. Переходим ко второй строке, которую начинает элемент $c_<21>$. Чтобы его найти придётся перемножить элементы второй строки матрицы $A$ и первого столбца матрицы $B$:

Следующий элемент $c_<22>$ находим, перемножая элементы второй строки матрицы $A$ на соответствующие элементы второго столбца матрицы $B$:

$$ c_<22>=5\cdot 3+4\cdot 20+(-2)\cdot 0 + 1\cdot (-4)=91. $$

Чтобы найти $c_<31>$ перемножим элементы третьей строки матрицы $A$ на элементы первого столбца матрицы $B$:

И, наконец, для нахождения элемента $c_<32>$ придется перемножить элементы третьей строки матрицы $A$ на соответствующие элементы второго столбца матрицы $B$:

$$ c_<32>=-8\cdot 3+11\cdot 20+(-10)\cdot 0 + (-5)\cdot (-4)=216. $$

Все элементы матрицы $C$ найдены, осталось лишь записать, что $C=\left(\begin 0 & 37 \\ -23 & 91 \\ 8 & 216 \end \right)$. Или, если уж писать полностью:

Кстати сказать, зачастую нет резона расписывать подробно нахождение каждого элемента матрицы-результата. Для матриц, размер которых невелик, можно поступать и так:

Стоит также обратить внимание, что умножение матриц некоммутативно. Это означает, что в общем случае $A\cdot B\neq B\cdot A$. Лишь для некоторых типов матриц, которые именуют перестановочными (или коммутирующими), верно равенство $A\cdot B=B\cdot A$. Именно исходя из некоммутативности умножения, требуется указывать как именно мы домножаем выражение на ту или иную матрицу: справа или слева. Например, фраза "домножим обе части равенства $3E-F=Y$ на матрицу $A$ справа" означает, что требуется получить такое равенство: $(3E-F)\cdot A=Y\cdot A$.

Транспонированная матрица.

Попросту говоря, для того, чтобы получить транспонированную матрицу $A^T$, нужно в исходной матрице $A$ заменить столбцы соответствующими строками по такому принципу: была первая строка – станет первый столбец; была вторая строка – станет второй столбец; была третья строка – станет третий столбец и так далее. Например, найдем транспонированную матрицу к матрице $A_<3\times 5>$:

Соответственно, если исходная матрица имела размер $3\times 5$, то транспонированная матрица имеет размер $5\times 3$.

Некоторые свойства операций над матрицами.

Здесь предполагается, что $\alpha$, $\beta$ – некоторые числа, а $A$, $B$, $C$ – матрицы. Для первых четырех свойств я указал названия, остальные можно назвать по аналогии с первыми четырьмя.

  1. $A+B=B+A$ (коммутативность сложения)
  2. $A+(B+C)=(A+B)+C$ (ассоциативность сложения)
  3. $(\alpha+\beta)\cdot A=\alpha A+\beta A$ (дистрибутивность умножения на матрицу относительно сложения чисел)
  4. $\alpha\cdot(A+B)=\alpha A+\alpha B$ (дистрибутивность умножения на число относительно сложения матриц)
  5. $A(BC)=(AB)C$
  6. $(\alpha\beta)A=\alpha(\beta A)$
  7. $A\cdot (B+C)=AB+AC$, $(B+C)\cdot A=BA+CA$.
  8. $A\cdot E=A$, $E\cdot A=A$, где $E$ – единичная матрица соответствующего порядка.
  9. $A\cdot O=O$, $O\cdot A=O$, где $O$ – нулевая матрица соответствующего размера.
  10. $\left(A^T \right)^T=A$
  11. $(A+B)^T=A^T+B^T$
  12. $(AB)^T=B^T\cdot A^T$
  13. $\left(\alpha A \right)^T=\alpha A^T$

В следующей части будет рассмотрена операция возведения матрицы в целую неотрицательную степень, а также решены примеры, в которых потребуется выполнение нескольких операций над матрицами.



Дискретные и непрерывные координаты