Теорема Лагранжа и ее следствия

Теорема Лагранжа и ее следствия - Курсовая Работа, раздел Образование, Лекция 6. Применение производных к исследованию функций Теорема(Лагранж) (О Конечных Приращениях.

Теорема(Лагранж) (о конечных приращениях). Если функция f(x) непрерывна на отрезке [a, b], дифференцируема на интервале (a, b), то найдется хотя бы одна точка с є (a, b) такая, что выполняется равенство

Доказательство. Теорему Лагранжа можно рассматривать как частный случай теоремы Коши, если положить φ(х) = х. В этом случае

Подставляя эти значения в формулу , получаем или f(b) – f(a) = f'(с) (ba).

Формула Лагранжа: приращение дифференцируемой функции на отрезке [a, b] равно приращению аргумента, умноженному на значение производной функции в некоторой внутренней точке этого отрезка.

Геометрический смысл формулы Лагранжа.

Запишем формулу Лагранжа в виде , где a < c < b. Отношение есть угловой коэффициент секущей АВ, а f'(с) – угловой коэффициент касательной к кривой в точке х = с (рис. 2).

Следовательно, геометрический смысл теоремы Лагранжа таков: на графике функции f(x) найдется точка С(с, f(с)), в которой касательная к графику f(x) параллельна секущей АВ.

Следствие 1.Если f'(х) = 0 на некотором промежутке (a, b), то функция f(x) постоянна на этом промежутке.

Доказательство. Пусть f'(х) = 0 для любого х є (a, b). Возьмем произвольные х1 и х2 из (a, b) и пусть х1 < х2. Тогда по теореме Лагранжа существует точка с є (a, b) такая, что f(х2) – f(х1) = f'(с) (х2х1). Но по условию f'(х) = 0, стало быть, f'(с) = 0, где х1 < с < х2. Поэтому имеем f(х2) – f(х1) = 0 или f(х2) = f(х1). А так как х1 и х2 – произвольные точки из (a, b), то имеем f(x) = с.

Следствие 2. Если две функции имеют равные производные на некотором промежутке, то они отличаются друг от друга на постоянное слагаемое.

Тогда (f1(х) – f2(х))' = f'1(х) – f'2(х) = 0. Следовательно, согласно следствию 1, функция f1(х) – f2(х) есть постоянная, т.е. f1(х) – f2(х) = с для . Теорема доказана.

Эта тема принадлежит разделу:

Лекция 6. Применение производных к исследованию функций

На сайте allrefs.net читайте: "Курсовая работа"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Теорема Лагранжа и ее следствия

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Теорема(Ферма) (о равенстве нулю производной). Если функция f(x), дифференцируема на интервале (a, b)

Теорема(Ролль) (о нуле производной функции, принимающей на концах отрезка равные значения). Если функция f(x) непрерывна на отрезке [

Теорема(Коши) (об отношении конечных приращений двух функций). Если функции f(x) и φ(x) непрерывны на отрезке [a

Правило Лопиталя используется для раскрытия неопределенностей вида и

Неопределенности вида 0·∞, ∞ - ∞, 1∞, ∞0, 00 сводятся к двум основным видам неопределенностей

Хотите получать на электронную почту самые свежие новости?

Подпишитесь на Нашу рассылку
Новости и инфо для студентов
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто

Информация в виде рефератов, конспектов, лекций, курсовых и дипломных работ имеют своего автора, которому принадлежат права. Поэтому, прежде чем использовать какую либо информацию с этого сайта, убедитесь, что этим Вы не нарушаете чье либо право.



Площадь в полярных координатах


Узнать стоимость за 15 минут
  • Тип работы
  • Часть диплома
  • Дипломная работа
  • Курсовая работа
  • Контрольная работа
  • Реферат
  • Научно - исследовательская работа
  • Отчет по практике
  • Ответы на билеты
  • Тест/экзамен online
  • Монография
  • Эссе
  • Доклад
  • Компьютерный набор текста
  • Компьютерный чертеж
  • Рецензия
  • Перевод
  • Репетитор
  • Бизнес-план
  • Конспекты
  • Проверка качества
  • Единоразовая консультация
  • Аспирантский реферат
  • Магистерская работа
  • Научная статья
  • Научный труд
  • Техническая редакция текста
  • Чертеж от руки
  • Диаграммы, таблицы
  • Презентация к защите
  • Тезисный план
  • Речь к диплому
  • Доработка заказа клиента
  • Отзыв на диплом
  • Публикация статьи в Вак
  • Публикация статьи в Scopus
  • Дипломная работа MBA
  • Повышение оригинальности
  • Шрифт, pt
  • 12 pt
  • 14 pt
  • Другой
Прикрепить файл
Заказать