Тождественные преобразования тригонометрических выражений. Тригонометрические уравнения и неравенства и методика обучения решению

Тригонометрический материал изучается в школьном курсе в несколько этапов.

Функции тригонометрических функций для углов от до

(прямоугольный треугольник, планиметрия);

Тригонометрические функции для углов от до (тема: "Декартовы координаты на плоскости; геометрия");

Тригонометрические функции для любого действительного числа.

Параллельно изучению теоретического материала учащиеся знакомятся с тригонометрическими формулами, объём которых будет постепенно рассширяться. Умение "выделить" эти формулы в дальнейшем поможет в преобразовании тригонометрических выражений.

К обязательным результатам обучения за курс геометрии в 7-9 классах относиться умение решать типичные задачи на вычисление значений геометрических величин (длин, углов, площадей) с привлечением свойств фигур, аппарата алгебры и тригонометрии.

В прямоугольном треугольнике найдите катеты, если его гипотенуза равна 5 см, а один из углов равен .

В прямоугольном треугольнике катет равен 4 см, а прилежащий к нему угол равен . Найдите другой катет и гипотенузу.

В треугольнике ABC: AB=3см, BC=6 см, . Определите .

В треугольнике ABC известны стороны: AB=4 см; BC=5 см; AC=6 см.

Существуют различные доказательства формулы косинуса суммы двух аргументов.

Одно из наиболее простых доказательств основано на применении системы координат и формулы расстояние между двумя точками. Воспроизвести доказательство по опорному конспекту:

С другой стороны:

и по доказанной формуле.

Для доказательства суммы и разности двух углов используются формула приведения, которые помогают преобразовать функции от аргументов вида:

Проведём радиус , длина которого равна , на угол : и получили радиус , где и на угол и получим радиус , где .

- прямоугольник. Повернём его на угол вокруг точки :

К функциям от углов можно прийти и из геометрических соображений.

Формулы приведения для и выводится из определения этих функций и ранее полученных формул приведения для синуса и косинуса. После этого полученные результаты сводятся в одну таблицу, с помощью которой можно сформулировать мнемоническое правило. Желательно учащимся предложить алгоритм применения формул приведения. Поясним его на примере:

Вернёмся к выводу формулы синуса суммы и разности двух углов.

а затем применяется уже известная формула.

Формулы двойного угла выводятся из формулы синуса и косинуса суммы и разности двух углов, положив .

Сумму и разность тригонометрических функций можно преобразовать в произведение, используя следующий пример:

Замечание: при ознакомлении учащихся с формулами следует добиваться от них проговаривания словесных формулировок доказываемых формул.

Например: сумма синусов двух углов равна удвоенному произведению синуса полусуммы этих углов на косинус полуразности.

В курсе алгебры 9 класса изучается тема: "Элементы тригонометрии" (30 часов):

1) радианное измерение углов, sin, cos, tg произвольного угла, их нахождение с помощью калькулятора;

2) основные тригонометрические тождества:

Их применение для вычисления значений sin, cos, tg;

3) формулы приведения; sin, cos суммы и разности двух углов; sin и cos двойного угла;

4) тождественные преобразования тригонометрических выражений; основная цель - сформировать умения выполнять тождественные преобразования несложных тригонометрических выражений с использованием формул, указанных в программе:

Рассмотрим некоторые примеры преобразований тригонометрических выражений:

Преобразуем левую часть и получим, применив формулы приведения:

8cos4+sin8=2sin8cos4+2sin4cos4=2cos4(sin8+sin4)=4cos4sin6cos2, и т.д.

Можно применить формулы понижения степени:

Преобразовать в произведение:

б) 3+4cos4+cos8=3(1+cos4)+(cos4+cos8)=6cos 2 2+

+2cos2)=2cos2(2cos4cos2+2cos2)=4cos 2 2(cos4+cos2)=

=4cos 2 2cos 2 2=8cos 4 2

Найти sin 4 +cos 4 , если известно, что:

sin 4 +cos 4 =(sin 2 +cos 2 ) 2 -2sin 2 cos 2 =1-2sin 2 cos 2 =



Дифференцируемость функции
Ряды Тейлора и Маклорена


Узнать стоимость за 15 минут
  • Тип работы
  • Часть диплома
  • Дипломная работа
  • Курсовая работа
  • Контрольная работа
  • Реферат
  • Научно - исследовательская работа
  • Отчет по практике
  • Ответы на билеты
  • Тест/экзамен online
  • Монография
  • Эссе
  • Доклад
  • Компьютерный набор текста
  • Компьютерный чертеж
  • Рецензия
  • Перевод
  • Репетитор
  • Бизнес-план
  • Конспекты
  • Проверка качества
  • Единоразовая консультация
  • Аспирантский реферат
  • Магистерская работа
  • Научная статья
  • Научный труд
  • Техническая редакция текста
  • Чертеж от руки
  • Диаграммы, таблицы
  • Презентация к защите
  • Тезисный план
  • Речь к диплому
  • Доработка заказа клиента
  • Отзыв на диплом
  • Публикация статьи в Вак
  • Публикация статьи в Scopus
  • Дипломная работа MBA
  • Повышение оригинальности
  • Шрифт, pt
  • 12 pt
  • 14 pt
  • Другой
Прикрепить файл
Заказать