Вопрос 6. Уравнение прямой, проходящей через данную точку в данном направлении

Вопрос 4. Общее уравнение прямой

Всякое уравнение первой степени относительно х и у, т.е. уравнение вида Ax+By+C=0

(где А, В и С- постоянные коэффициенты, причем А 2 +В 2 ≠0) определяет на плоскости некоторую прямую. Это уравнение называется общим уравнением прямой.

1. С=0; А≠0; В≠0. Прямая, определяемая уравнением Ах+Ву=0, проходит через начало координат.

2. А=0, В≠0; С≠0. Прямая, определяемая уравнением Ву+С=0 (или у=b, где ), параллельна оси (ох).

3. В=0; А≠0; С≠0. Прямая, определяемая уравнением Ах+С=0 (или ), параллельна оси Оу.

4. В=С=0; А≠0. Прямая определяемая уравнением Ах=0 (или x=0 поскольку А≠0), совпадает с осью Оу.

5. А=С=0; В≠0. Прямая, определяемая уравнением Ву=0 (или у=0, поскольку В≠0), совпадает с осью Oх.

Если в общем уравнении прямой В≠0, то, разрешив его относительно у, получим уравнение вида y=kx+в (здесь ). Его называют уравнением с угловым коэффициентом поскольку где -угол, образованный прямой с положительным направлением оси Oх. Свободный член уравнения в равен ординате точки пересечения прямой с осью Oу.

Вопрос 5. уравнение прямой в отрезках.

Уравнение прямой в отрезках на плоскости в прямоугольной системе координат Oxy имеет вид , где a и b - некоторые отличные от нуля действительные числа.

Уравнение прямой в отрезках не случайно получило такое название - абсолютные величины чисел a и b равны длинам отрезков, которые отсекает прямая на координатных осях Ox и Oy, считая от начала координат.

Поясним этот момент. Мы знаем, что координаты любой точки прямой удовлетворяют уравнению этой прямой. Тогда отчетливо видно, что прямая, заданная уравнением прямой в отрезках, проходит через точки и , так как и . А точки и как раз расположены на координатных осях Ox и Oy соответственно и удаленны от начала координат на a и b единиц. Знаки чисел a и b указывают направление, в котором следует откладывать отрезки. Знак «+» означает, что отрезок откладывается в положительном направлении координатной оси, знак «-» означает обратное.

Изобразим схематический чертеж, поясняющий все вышесказанное. На нем показано расположение прямых относительно фиксированной прямоугольной системы координат Oxy в зависимости от значений чисел a и b в уравнении прямой в отрезках.

Теперь стало понятно, что уравнение прямой в отрезках позволяет легко производить построение этой прямой линии в прямоугольной системе координат Oxy. Чтобы построить прямую линию, которая задана уравнением прямой в отрезках вида , следует отметить в прямоугольной системе координат на плоскости точки и , после чего соединить их прямой линией с помощью линейки.

Вопрос 6. Уравнение прямой, проходящей через данную точку в данном направлении

Предположим, что прямая проходит через точку M1 (x1,y1) и образует с осью OX угол j. Составим уравнение этой прямой.

X

Будем искать уравнение прямой в виде уравнения с угловым коэффициентом: y = k · x + b. Угловой коэффициент прямой можно найти, зная угол наклона k = tg j. Возьмем произвольную точку M (x, y), лежащую на этой прямой, и найдем уравнение, связывающее переменные x и y. Так как точки М и M1 лежат на прямой, то их координаты удовлетворяют уравнению прямой:

Вычитая эти равенства, получим:

y - y1 = k · (x - x1) - уравнение прямой, проходящей через данную точку в данном направлении.



Найти площадь фигуры, ограниченной линиями


Узнать стоимость за 15 минут
  • Тип работы
  • Часть диплома
  • Дипломная работа
  • Курсовая работа
  • Контрольная работа
  • Реферат
  • Научно - исследовательская работа
  • Отчет по практике
  • Ответы на билеты
  • Тест/экзамен online
  • Монография
  • Эссе
  • Доклад
  • Компьютерный набор текста
  • Компьютерный чертеж
  • Рецензия
  • Перевод
  • Репетитор
  • Бизнес-план
  • Конспекты
  • Проверка качества
  • Единоразовая консультация
  • Аспирантский реферат
  • Магистерская работа
  • Научная статья
  • Научный труд
  • Техническая редакция текста
  • Чертеж от руки
  • Диаграммы, таблицы
  • Презентация к защите
  • Тезисный план
  • Речь к диплому
  • Доработка заказа клиента
  • Отзыв на диплом
  • Публикация статьи в Вак
  • Публикация статьи в Scopus
  • Дипломная работа MBA
  • Повышение оригинальности
  • Шрифт, pt
  • 12 pt
  • 14 pt
  • Другой
Прикрепить файл
Заказать