Как вычислить длину дуги кривой?

И в данной статье мы узнаем, как вычислить данную величину, если линия задана функцией , либо параметрически , или же уравнением в полярной системе координат. Для каждого случая будут разобраны практические примеры с подробными комментариями о типичных особенностях решения этой задачи. Более того, по ходу изложения материала вас ждёт специальное предложение, которое должно понравиться ;-)

Пусть некоторая функция непрерывна на отрезке , и её график на данном промежутке представляет собой кривую или, что то же самое, дугу кривой :

В предположение о непрерывности производной на , длина кривой выражается формулой:

или компактнее:

Согласно геометрическому смыслу, длина не может быть отрицательной, и это заведомо гарантируется неотрицательностью подынтегральной функции (при разумеющемся условии ). Таким образом, в данной задаче не возникает дополнительных хлопот по поводу того, как и где «петляет» график (выше оси, ниже оси и т.д.).

Другой хорошей новостью является тот факт, что в практических примерах, как правило, не нужно строить чертежа. Это была единственная иллюстрация в статье, чтобы вы быстрее поняли, о чём вообще идёт речь. Впрочем, начнём с кривой, которую всем вбили в голову ещё в далёком детстве =)

Вычислить длину дуги параболы от точки до точки

Решение: принимая во внимание «иксовые» координаты точек, определяем пределы интегрирования и используем формулу:

Интегрируем по частям:

Открываем одиночной «звёздочкой» основное решение и используем формулу Ньютона-Лейбница:

Ответ:

Скрупулёзно не проверял, но если взглянуть на параболу, то очень и очень похоже на правду. Громоздких и страшных результатов бояться не нужно, рАвно, как и длинных решений!

Следующие разминочные задачи для самостоятельного решения

Вычислить длину дуги полукубической параболы от точки до точки

Интеграл здесь будет значительно проще, чем в предыдущем примере. Однако за кажущейся простотой нередко скрывается коварство. Так, вроде бы похожее условие «Вычислить длину дуги полукубической параболы на промежутке » далеко не эквивалентно и приводит к совершенно другому ответу.

Да, в рассматриваемом типе задач обычно не требуется выполнять чертёж, но всегда полезно, а иногда и очень важно знать, что это за линия и КАК выглядит её график ;-)

Вычислить длину дуги кривой ,

Это более распространённый вариант формулировки – когда промежуток интегрирования указан в виде двойного неравенства.

А что тут смущает? Люди без комплексов давно интегрируют по любой переменной, и я ещё в статье Объем тела вращения предлагал вам расширить свои взгляды =)

Обратная функция и её производная непрерывны на отрезке , поэтому применима зеркальная формула , где и , естественно, уже «игрековые» пределы интегрирования.

Кстати, в первом примере можно рассмотреть правую ветвь параболы с пределами интегрирования , правда, хрен редьки не слаще. Хотя любители оценят, интеграл получается трудный, но вполне реалистичный.

В следующем параграфе рассмотрим критически важную вещь, касающуюся всех задач урока:

Как найти длину дуги кривой, если линия задана параметрически?

Если линия задана параметрическими уравнениями , то при выполнении некоторых условий, на которых я не буду останавливаться, длина дуги кривой , которая прочерчивается при изменении параметра в пределах , рассчитывается по формуле:

, где – значения, определяющие точки и .

В начале урока о площади и объёме при линиях, заданных параметрически, я обратил ваше внимание на тот факт, что параметрические уравнения могут «прорисовывать» кривую как слева направо, так и справа налево, из-за чего во втором случае «вылезает минус» и возникают небольшие технические затруднения. В рассматриваемой задаче мы от этого избавлены! Так как подынтегральная функция, как и в первом пункте, неотрицательна , то заранее можно утверждать, что результата со знаком «минус» получиться не должно (понятно, при условии ).

Однако вместо «вопроса прорисовки дуги» у нас появляется другая почётная обязанность – беречь неотрицательность подынтегральной функции, как зеницу ока:

Вычислить длину дуги кривой

Решение: аналитические условия задают левую верхнюю дугу астроиды. Причём параметрические уравнения «прорисовывают» эту кривую справа налево, но, как я только что отметил, сейчас нас это не волнует, и асфальтный каток едет дальше.

Используем формулу .

Сначала найдём производные:

и упростим сумму их квадратов:

Это оптимальная во многих случаях техника решения, позволяющая не «таскать за собой» значки корня и интеграла с пределами интегрирования. Тем самым минимизируется риск что-нибудь потерять в громоздкой записи.

Гораздо удобнее «зарядить» в формулу готовую сумму:

А вот теперь самый важный момент. Здесь нельзя «машинально» избавляться от корня и необходимо придерживаться следующего правила:

, если функция на промежутке ,

или , если на данном промежутке.

Эта «развилка» сохраняет неотрицательность подынтегральной функции, что соответствует геометрическому смыслу задачи.

На отрезке , следовательно, их произведение неположительное: и поэтому

Не понимаете, почему ? Посмотрите на их графики.

Продолжаем, а точнее, заканчиваем решение:

Ответ:

Приятно, когда знаешь график функции, но вдвойне приятнее, когда можно эффективно проверить или даже заранее узнать ответ. Длина астроиды равна . В нашей задаче и мы рассчитали длину «четвертинки»:

, что и требовалось проверить.

Вычислить длину дуги кривой с точностью до двух знаков после запятой

Примерный образец оформления задачи и в конце урока.

Продолжаем динамично закатывать асфальт:

Как найти длину дуги кривой, если линия задана в полярной системе координат?

Пусть кривая задана в полярных координатах уравнением , где , и при этом значение определяет точку , а значение – точку . Если на промежутке функция имеет непрерывную производную , то длина кривой выражается следующей формулой:

Условие логично и незыблемо. Это третья, похожая на предыдущую формула, которую мы незамедлительно оприходуем:

Вычислить длину дуги кривой, заданную в полярной системе координат

,

Порядок и принципы решения точно такие же.

Используем формулу .

Найдём производную по «фи»:

Составим и максимально упростим подкоренное выражение:

…мда, презабавно, всё время понижали-понижали степень, а теперь её надо повысить. Используем формулу двойного угла и основное тригонометрическое тождество , выцыганив тем самым заветный квадрат:

Теперь нужно разобраться с функцией на отрезке , чтобы правильно избавиться от корня. Я мысленно представляю график и вижу, что функция здесь положительна, но это очевидно далеко не всем, и в этой ситуации можно использовать нечто похожее на метод интервалов. Вычислим значение функции в какой-нибудь промежуточной точке, например, посерединке в точке :

, а значит, и в любой точке интервала . К слову, и на концах тоже.

Примечание: строго говоря, надо ещё добавить, что уравнение не имеет корней на данном интервале.

Таким образом, вынесение из-под корня проходит без всяких последствий. …Не хотел вам рассказывать об одном нехорошем методе решения, но таки поделюсь – всё равно догадаетесь, по себе знаю =) На черновике считаем интеграл и если получился отрицательный результат, то на чистовике ставим перед интегралом «минус». И никаких запарок с рассуждениями.

Ответ:

Я решил эту задачу много лет назад именно таким способом, и недавно, подбирая примеры к уроку, нашёл, пожалуй, более симпатичное решение, идея которого состоит в использовании формулы приведения и дальнейшего повышения степени по избитой формуле . Там получился ответ в другом виде, но численно результаты совпадают. Такое тоже бывает.

Затем я углубился в решебник и нашёл ещё много чего знакомого =) Такое впечатление, что сборник Кузнецова – очень популярный поставщик задач по приложениям определённого интеграла в контрольные работы. И здесь вы можете найти порядка сотни прорешанных примеров, велика вероятность, что найдётся и ваш.

Успокоительная миниатюра для самостоятельного решения:

Вычислить длину дуги кривой, заданную в полярной системе координат

,

Хочется сказать ещё что-нибудь ласковое, но, к сожалению, я тороплюсь, сегодня пятница и мне тоже хочется погулять =)

Решения и ответы:

Пример 2: Решение: пределы интегрирования: . Из условия следует, что требуется вычислить длину дуги верхней ветви .

Найдём производную: .

Ответ:

(1) Используем тригонометрическую формулу

(2) При вынесении из-под корня необходимо, чтобы подынтегральная функция осталась положительной: . Так как на отрезке интегрирования, то: .

Ответ:

Пример 5: Решение: используем формулу .

Примечание: при любом значении .

Ответ:

Ответ:

Автор: Емелин Александр

(Переход на главную страницу)

Качественные работы без плагиата – Zaochnik.com



Площадь в полярных координатах