Приближенное вычисление определенного интеграла

с помощью разложения подынтегральной функции в ряд Маклорена

Этот небольшой урок позволит не только освоить типовую задачу, которая довольно часто встречается на практике, но и закрепить материалы статьи Разложение функций в степенные ряды. Нам потребуется таблица разложений функций в степенные ряды, которую можно раздобыть на странице Математические формулы и таблицы. Кроме того, читатель должен понимать геометрический смысл определенного интеграла и обладать элементарными навыками интегрирования.

На уроке Определенный интеграл. Как вычислить площадь фигуры? речь шла о том, что определенный интеграл – это площадь. Но в некоторых случаях интеграл является очень трудным или неберущимся, поэтому соответствующую площадь в большинстве случаев можно вычислить только приближенно.

Например: вычислить определенный интеграл . Такой интеграл является неберущимся, но аналитически и геометрически всё хорошо:

Мы видим, что подынтегральная функция непрерывна на отрезке , а значит, площадь существует, и определенный интеграл численно равен заштрихованной площади. Беда только в том, что данную площадь можно вычислить лишь приближенно с определенной точностью. На основании вышеизложенных фактов и появилась типовая задача курса высшей математики.

Вычислить приближенно определенный интеграл, предварительно разложив подынтегральную функцию в ряд Маклорена, с точностью до 0,001

Решение: Идея метода состоит в том, чтобы заменить подынтегральную функцию соответствующим степенным рядом.

Поэтому на первом этапе нужно разложить подынтегральную функцию в ряд Маклорена. Эту распространенную на практике задачу мы очень подробно рассмотрели на уроке Разложение функций в степенные ряды. Кстати, рекомендую всем прочитать, поскольку некоторые вещи, о которых сейчас пойдет разговор, могут показаться малопонятными.

Используем табличное разложение:

В данном случае

Обратите внимание, как я записал ряд. Специфика рассматриваемого задания требует записывать только несколько первых членов ряда. Мы не пишем общий член ряда , он здесь ни к чему.

Чем больше членов ряда мы рассматриваем – тем лучше будет точность. Сколько слагаемых рассматривать? Из практики могу сказать, что в большинстве случаев для достижения точности 0,001 достаточно записать первые 4 члена ряда. Иногда требуется меньше. А иногда больше. Если в практическом примере их не хватило, то придётся переписывать всё заново =( Поэтому целесообразно провести предварительный черновой анализ или перестраховаться, изначально записав побольше членов (собственно, такой же совет как и для приближенного вычисления значения функции с помощью ряда).

Следует также отметить, что точность до трёх знаков после запятой самая популярная. Также в ходу и другая точность вычислений, обычно 0,01 или 0,0001.

Теперь второй этап решения:

Сначала меняем подынтегральную функцию на полученный степенной ряд:

Почему это вообще можно сделать? Данный факт пояснялся на уроке Разложение функций в степенные ряды – график бесконечного многочлена в точности совпадает с графиком функции ! Причем, в данном случае утверждение справедливо для любого значения «икс», а не только для отрезка интегрования .

На следующем шаге максимально упрощаем каждое слагаемое:

Лучше это сделать сразу, чтобы на следующем шаге не путаться с лишними вычислениями.

После упрощений почленно интегрируем всю начинку:

Интегралы здесь простейшие, на этом я не останавливаюсь.

На завершающем этапе вспоминаем школьную формулу Ньютона-Лейбница . Для тех, кто не смог устоять перед Ньютоном и Лейбницем, есть урок Определенные интегралы. Примеры решений.

Техника вычислений стандартна: сначала подставляем в каждое слагаемое 0,3, а затем ноль. Для вычислений используем калькулятор:

Заметьте, что для решения хватило первых трёх членов ряда, поскольку уже третий член меньше требуемой точности 0,001. Данный член ряда обычно не приплюсовывают к результату, именно поэтому для окончательного расчёта выбраны только первые два числа: .

Ответ: , с точностью до 0,001

Что это получилось за число с геометрической точки зрения? – это приблизительная площадь заштрихованной фигуры (см. рисунок выше).

Отметим еще один факт: – каждый следующий член ряда по модулю (без учёта знака) меньше, чем предыдущий. Почему члены ряда неизбежно убывают по модулю? Потому-что полученное нами разложение в ряд сходится к функции на отрезке интегрирования .

Вычислить приближенно определенный интеграл, предварительно разложив подынтегральную функцию в ряд по степеням , с точностью до 0,001

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Как-то незаслуженно я обошел стороной арктангенс, ни разу не разложив его в ряд. Исправим оплошность.

Вычислить определенный интеграл с точностью 0,01 с помощью разложения подынтегральной функции в ряд.

Решение: Есть сильное подозрение, что данный интеграл является берущимся, правда, решение не самое простое.

Разложим подынтегральную функцию в ряд Маклорена. Используем разложение:

В данном случае

Здесь повезло, что в итоге степени таки остались целыми, дробные степени было бы труднее интегрировать.

Ответ: с точностью до 0,01.

Обратите внимание на тот факт, что уже второй член ряда 0,00089 по модулю значительно меньше требуемой точности 0,01. Бывает и так. Члены с возу – кобыле легче.

Не следует забывать об области сходимости ряда. Область сходимости арктангенса в традиционном варианте: , и наш отрезок интегрирования полностью лежит в данной области. Кстати, в конкретном рассмотренном примере область сходимости еще меньше: , так как под интегралом есть квадратный корень.

Что будет, если попытаться решить какой-нибудь нелегальный случай вроде ? Функция так же прекрасно разложится в ряд, члены ряда так же замечательно проинтегрируются. Но, когда мы начнем подставлять значение верхнего предела по формуле Ньютона-Лейбница, то увидим, что числа будут неограниченно расти, то есть каждое следующее число будет больше, чем предыдущее. Ряд-то сходится лишь на отрезке . Это не паранойя, на практике так время от времени бывает. Причина – опечатка в сборнике задач или методичке, когда авторы недосмотрели, что отрезок интегрирования «вылазит» за интервал сходимости ряда.

Интеграл с арксинусом я рассматривать не буду, поскольку он занесен в красную книгу. Лучше дополнительно рассмотреть что-нибудь «бюджетное»:

Вычислить определенный интеграл с точностью 0,001 путем разложения подынтегральной функции в ряд и почленного интегрирования этого ряда.

Это пример для самостоятельного решения.

В заключение рассмотрим еще пару примеров, которые несколько сложнее.

Вычислить определенный интеграл с точностью 0,001 с помощью разложения подынтегральной функции в ряд и почленного интегрирования этого ряда.

Решение: Анализирую подынтегральную функцию, приходим к выводу, что нужно использовать биномиальное разложение. Но сначала функцию надо представить в соответствующем виде:

К сожалению, ни один частный случай биномиального разложения не подходит, и нам придется использовать громоздкую общую формулу:

В данном случае: ,

Разложение уже на этом этапе лучше максимально упростить. Замечаем также, что четвертый член ряда нам, очевидно, не потребуется, так как в нём еще до интегрирования появилась дробь , которая заведомо меньше требуемой точности 0,001.

Не забываем, что есть еще один множитель:

Наиболее кропотливый этап пройден, вычислим интеграл:

Ответ: с точностью до 0,001.

Нечто подобное для самостоятельного решения:

Вычислить определенный интеграл с точностью 0,001 путем разложения подынтегральной функции в ряд и почленного интегрирования этого ряда.

Рассмотренная типовая задача на самом деле довольно неприятна, так как не существует простых способов проверки результата. По невнимательности легко пропустить какое-нибудь число, степень, неточно разложить функцию в ряд, неверно проинтегрировать, допустить банальную ошибку в вычислениях. Поэтому очень важно подходить к решению таких задач с ясной головой.

Решения и ответы:

Пример 2: Решение: разложим подынтегральную функцию в ряд.

Используем частный случай биномиального разложения:

В данном случае:

Ответ: с точностью до 0,001.

Пример 4: Решение: разложим подынтегральную функцию в ряд.

Используем разложение:

Ответ: с точностью до 0,001.

Используем биномиальное разложение:

В данном случае: ,

Ответ: с точностью до 0,001.



Производная как отношение дифференциалов