Вектор. Векторное произведение векторов.

Векторное произведение — это псевдовектор, который перпендикулярен плоскости, построенной по двум

сомножителям, которые являются результатом бинарной операции «векторное умножение» над

векторами в трёхмерном евклидовом пространстве.

Векторное произведение не имеет свойств коммутативности и ассоциативности (антикоммутативное)

Векторное произведение помогает в «измерении» перпендикулярности векторов — модуль

векторного произведения двух векторов равен произведению модулей этих векторов, если они

перпендикулярны, и стремится к нулю, если векторы параллельны или антипараллельны.

В отличие от формулы для вычисления по координатам векторов скалярного произведения в

трёхмерной прямоугольной системе координат, формула для векторного произведения зависит

от ориентации прямоугольной системы координат или, говоря другими словами, её «хиральности».

Векторное произведение двух векторов обозначается квадратными скобками:

Свойства векторного произведения векторов.

1. Геометрический смысл векторного произведения векторов.

Векторным произведением вектора на вектор является

вектор , длина его численно соответствует площади

параллелограмма, который построен на векторах и ,

перпендикулярный к плоскости этих векторов и направлен

так, чтоб самое маленькое вращение от к около

вектора происходило против часовой стрелки, если взгляд вести

с конца вектора .

Модуль векторного произведения двух векторов и = площади параллелограмма, который

построен на них:

Площадь треугольника строящегося на векторах и соответствует одной второй модуля

векторного произведения векторов и :

2. Вектор перпендикулярен векторам и , то есть и ;

3. Вектор направлен таким образом, что поворот от вектора к вектору происходит против часовой стрелки, если смотришь с конца вектора (в таком случае тройка векторов , и – правая).

4. Длина вектора равна || * || sin<(,).

5. Векторное произведения двух не нулевых векторов и = 0 тогда и только тогда, когда

6. Вектор , равен векторному произведению не нулевых векторов и и перпендикулярен

7.

8.

9.

Как найти векторное произведение векторов, формула.

Векторное произведение двух векторов в

декартовой системе координат – его значение можно вычислить по схеме приведенной ниже:

Выражение векторного произведения через координаты.

Используем таблицу векторного произведения векторов i , j и k :

Если направление самого короткого пути от 1 вектора ко 2 совпадает с направлением стрелки, то

произведение векторов равно 3 вектору, а если оно не одинаково — 3 вектор приобретает знак «—».

этих векторов, перемножив их как многочлены (согласно свойствам векторного произведения векторов):

Окончательную формулу легко выразить еще короче:



Линейные однородные ДУ n-го порядка


Узнать стоимость за 15 минут
  • Тип работы
  • Часть диплома
  • Дипломная работа
  • Курсовая работа
  • Контрольная работа
  • Реферат
  • Научно - исследовательская работа
  • Отчет по практике
  • Ответы на билеты
  • Тест/экзамен online
  • Монография
  • Эссе
  • Доклад
  • Компьютерный набор текста
  • Компьютерный чертеж
  • Рецензия
  • Перевод
  • Репетитор
  • Бизнес-план
  • Конспекты
  • Проверка качества
  • Единоразовая консультация
  • Аспирантский реферат
  • Магистерская работа
  • Научная статья
  • Научный труд
  • Техническая редакция текста
  • Чертеж от руки
  • Диаграммы, таблицы
  • Презентация к защите
  • Тезисный план
  • Речь к диплому
  • Доработка заказа клиента
  • Отзыв на диплом
  • Публикация статьи в Вак
  • Публикация статьи в Scopus
  • Дипломная работа MBA
  • Повышение оригинальности
  • Шрифт, pt
  • 12 pt
  • 14 pt
  • Другой
Прикрепить файл
Заказать