Касательная. Задачи на касательную

Статья просмотрена: 24455 раз

Библиографическое описание:

Шмидт Н. М. Касательная. Задачи на касательную // Молодой ученый. — 2012. — №5. — С. 541-545. — URL https://moluch.ru/archive/40/4868/ (дата обращения: 24.01.2018).

Чтобы правильно и рационально решать задачи, связанные с уравнением касательной, нужно четко понимать, что такое касательная, владеть техникой составления уравнения касательной к графику функции и представлять себе, для решения каких задач (в том числе и задач с параметрами) можно использовать метод касательной.

Опр. 1. Касательной к графику функции у = f ( x ) называется предельное положение секущей MN при (рис. 1).

Касательная к кривой может иметь с ней несколько общих точек или пересекать ее. Можно дать и другое определение касательной к кривой.

Уравнение касательной к кривой у = f ( x ) в точке с абсциссой х0 имеет вид: .

Между понятием касательной и понятие производной имеется тесная связь. Геометрический смысл производной можно выразить так: если функция у = f ( x ) в точке х0 имеет производную, то в точке с этой абсциссой определена касательная к графику функции , причем ее угловой коэффициент равен . Вывод: если в точке х0 есть производная функции , то в точке с этой абсциссой есть касательная к графику функции и наоборот; если в точке х0 нет производной функции , то в точке с этой абсциссой нет касательной к графику функции и наоборот.

Укажем случаи, когда функция не имеет в точке касательной, и, следовательно, не имеет и производной. Таких случаев три: угловая точка, точка возврата, узловая точка

(рис. 2 а, б, в). Особо отметим случай, когда в точке функция имеет бесконечную производную (рис. 2 г).

угловая точка точка возврата узловая точка

Рассмотрим решение некоторых задач.

Задачи, связанные с определением того, является ли прямая у=kx+b касательной к графику функции у=f(x). Можно указать два способа решения таких задач.

Находим общие точки графиков, т. е. решаем уравнение f ( x ) = kx + b , а затем для каждого из его решений вычисляем . В тех случаях, когда = k , имеет место касание, в других — пересечение.

Находим корни уравнения = k и для каждого из них проверяем, выполняется ли равенство f(x) =kx+b. При его выполнении получаем абсциссы точек касания.

Обобщая оба способа, заметим, что для того чтобы прямая у=kx+b была касательной к графику функции у =f(x), необходимо и достаточно существование хотя бы одного числа х0, для которого выполняется система

При каких значениях b прямая у = 3х +b является касательной к графику функции у = ?

Решение. Записав условие касания получим

Ответ: .

При каких значениях а прямая у=ах+2 является касательной к графику функции

При каких значениях а прямая является касательной к графику функции

Является ли прямая касательной к графику функции ? Если является, то найти координаты точки касания.

Решение. Пусть . Из условия следует, что должны выполняться равенство , где - возможная абсцисса точки касания. Имеем:

Если теперь составить уравнение касательной к графику заданной функции в каждой из двух найденных точек, то окажется, что в точке как раз и получится . Значит, точка касания имеет координаты (1;-1).

К графику функции проведена касательная, параллельная прямой . Найти ординату точки касания.

Решение. . Абсцисса интересующей нас точки касания удовлетворяет уравнению . Имеем:

Таким образом, . Значит, - абсцисса точки касания. Чтобы найти ординату точки касания преобразуем выражение, задающее функцию:

Написать уравнение всех касательных к графику функции , параллельных прямой .

Решение. Так как касательная должна быть параллельна прямой , то ее угловой коэффициент, равный у'(х0), где х0 — абсцисса точки касания, совпадает с угловым коэффициентом данной прямой, т. е. . Отсюда или . Далее составляем уравнение касательной для каждой точки.

Ответ: , .

Найти все значения , при каждом из которых касательная к графикам функций и в точках с абсциссой параллельны.

Решение. Известно, что тангенс угла наклона касательной к графику функций в точке с абсциссой равен . Следовательно, все искомые значения будут корнями уравнения , откуда . Используя формулу разности синусов углов, будем иметь . Решая полученное уравнение, получаем

Найти расстояние между касательными к графику функции , расположенными параллельно оси .

Решение. Найдем критические точки заданной функции:

Так как, производная в точках и равна нулю, то касательные, проведенные к кривой в точках с этими абсциссами, параллельны оси . Найдем значения функций в этих точках.

Итак, расстояние d между касательными, параллельными оси , равно

С составлением уравнения касательной, параллельной данной прямой, связана задача о нахождении кратчайшего расстояния между графиком некоторой функции f ( x ) и прямой .

Во многих случаях удается найти касательную к графику , параллельную данной прямой и делящую плоскость на две части, в одной из которых расположен график функции, а в другой — заданная прямая. Тогда кратчайшим расстоянием между графиком функции и прямой является расстояние от точки М(х0; у0), в которой проведена параллельная касательная, до заданной прямой у = kx+b; это расстояние можно вычислить по формуле

Найти кратчайшее расстояние между параболой и прямой

Решение. Убедившись, что графики не имеют общих точек (уравнение не имеет решений), запишем уравнение такой касательной к графику функции , которая параллельна прямой Уравнение касательной имеет вид касание происходит в точке Прямая у = х – 2 и парабола у = х 2 расположены по разные стороны от касательной. Таким образом, кратчайшее расстояние между параболой и прямой равно расстоянию от точки М до прямой .

Ответ:

Довольно сложной является задача составления уравнения всех касательных к графику функции у = f ( x ), проходящих через заданную точку М(х0; у0), вообще говоря, не лежащую на графике. Приведем алгоритм решения этой задачи.

1. Составляем уравнение касательной к графику функции у = f ( x ) в произвольной точке графика с абсциссой t :

2. Решаем относительно t уравнение и для каждого его решения t записываем соответствующую касательную в виде .

Написать уравнение всех касательных к графику функции , проходящих через точку М(2; -2).

Указание. Уравнение касательной в точке с абсциссой t имеет вид . Так как эта касательная проходит через точку (2; -2), то

, откуда .

Ответ: .

Найти площадь треугольника, образованного касательными, проведенными к графику функции через точку и секущей, проходящей через точки касания.

Указание. Уравнение дает два решения: t 1 = 1, t 2 = 4. Таким образом, точки K 1 (1;1) и K 2(4;2) являются точками касания.

Говорят, что прямая является общей касательной графиков функции

и , если она касается как одного, так и другого графиков (но совершенно не обязательно в одной и той же точке). Например, прямая является общей касательной графиков функций (в точке М(2; 5) и (в точке K(0,5; -1)). Заметим, что графики функций и имеют в точке их пересечения М(х0; у0) общую невертикальную касательную тогда и только тогда, когда .

Доказать, что параболы и имеют в их общей точке общую касательную. Найти уравнение этой общей касательной. Решение. Уравнение имеет единственный корень х=2, т. е. параболы имеют единственную общую точку М(2;0). Убедимся, что значения производных для обеих функций в точке х = 2 равны; действительно, и . Далее составляем уравнение касательной.

Ответ: .

В завершении рассмотрим решение еще нескольких задач на касательную с параметром.

При каких значениях параметра касательная к графику функции в точке проходит через точку (2;3)?

Решение. Составим уравнение касательной к графику заданной функции в точке : Так как эта прямая проходит через точку (2;3), то имеет место равенство , откуда находим: .

Может ли касательная к кривой в какой-либо ее точке составлять острый угол с положительным направлением оси ?

Решение. Найдем производную функции . В любой точке, в которой функция определена, производная отрицательна. Но производная есть тангенс угла наклона касательной, а так как он отрицателен, то угол тупой.

Найти значение параметра , при котором касательная к графику функции в точке проходит через точку М(1;7).

Решение. Пусть тогда . Составим уравнение касательной:

По условию эта касательная проходит через точку М(1;7), значит, , откуда получаем:

При каких значениях параметра прямая является касательной к графику функции ?

Решение. Из условия следует, что должно выполнятся равенство где абсцисса точки касания. Значит, и связаны между собой равенством (1). Составим уравнение касательной к графику заданной функции в точке

Из условия следует, что должно выполняться равенство . Решив это уравнение, получим . Тогда из (1) получаем, что .

При каком значении прямая является касательной у графику ?

Решение. Так как прямая является касательной к графику функции , то в точке касания угловой коэффициент касательной равен 3. Но угловой коэффициент касательной равен значению производной функции в этой точке, то есть , откуда , следовательно, - абсцисса точки касания. Найдем теперь из условия равенства значений функций и при . Имеем , откуда .

При каких значениях параметра а касательные к графику функции , проведенные в точках его пересечения с осью оx , образуют между собой угол 60 о ?

Решение. В этой задаче, как и в предыдущих, речь идет о касательных к графику функции. Составлять уравнение касательной не надо, достаточно использовать геометрический смысл производной, то есть угловые коэффициенты касательных. Графиком данной функции является парабола с ветвями, направленными вверх, пересекающая ось о x в двух точках (случай а=0 нас не устраивает): и учитываем, что х2>0 (рис. 3)

Касательные АМ и ВМ пересекаются под углом 60 о в точке М, лежащей на оси параболы, причем возможны два случая: либо , либо смежный угол равен 60 о . в первом случае угол между касательной АО и осью х равен 120 о , следовательно, угол коэффициента касательной равен tg 120 o , то есть равен Далее имеем: . Таким образом, получаем, что , то . Во втором случае , поэтому угол между касательной АО и остью ох равен 150 о . Значит, угловой коэффициент касательной равен tg 150 o , то есть он равен . Таким образом, получаем, что , то есть

Ответ: .

Далингер, В.А. Начала математического анализа в задачах [Текст]: учебное пособие / В.А. Далингер. – Омск: Изд-во ГОУ ОМГПУ, 2009. – 312 с.

Звавич, Л.И. Алгебра и начала анализа. 8-11 кл. [Текст]: пособие для школ и классов с углубл. изучением математики / Л. И. Звавич, Л.Я. Шляпочник, М.В. Чинкина.– М.: Дрофа, 1999. – 352 с.



Инвариантность формы полного дифференциала